这个博客是之前三个move_base, gmapping和amcl的一个综合应用,如果前面三个关于pioneer3at的教程小伙伴们也都能够实现的话,这个实验应该也就不会太困难了,毕竟,万事开头难嘛…LZ可能还在头上O(∩_∩)O哈哈~
这个需要一个python的代码,在felaim_2dnav新建一个文件夹nodes,里面添加一个Python的脚本,nav_test.py
#!/usr/bin/env python
#因为有中文啦,要加这一句,不然会报错,不想添加也可以把中文注释去掉就行了
# coding=utf-8
#导入对应的依赖项
import rospy
import actionlib
from actionlib_msgs.msg import *
from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
from random import sample
from math import pow, sqrt
class NavTest():
def __init__(self):
rospy.init_node('nav_test', anonymous=True)
rospy.on_shutdown(self.shutdown)
# How long in seconds should the robot pause at each location?
#设置在每一个目标位置向下一个目标位置移动前需要暂停的秒数
#如果fake_test参数的值为true,那么rest_time参数会被忽略
self.rest_time = rospy.get_param("~rest_time", 10)
# Are we running in the fake simulator?
self.fake_test = rospy.get_param("~fake_test", False)
# Goal state return values
#可以用人类可读形式的MovaBaseAction目标状态很好的
goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',
'SUCCEEDED', 'ABORTED', 'REJECTED',
'PREEMPTING', 'RECALLING', 'RECALLED',
'LOST']
# Set up the goal locations. Poses are defined in the map frame.
# An easy way to find the pose coordinates is to point-and-click
# Nav Goals in RViz when running in the simulator.
# Pose coordinates are then displayed in the terminal
# that was used to launch RViz.
locations = dict()
#这个是LZ通过gmapping建图后,在rviz上确定的三个目标位置
locations['teacher_office'] = Pose(Point(-7.755, -21.776, 0.000), Quaternion(0.000, 0.000, 0.000, 1.000))
locations['elevator'] = Pose(Point(3.669, -23.923, 0.000), Quaternion(0.000, 0.000, 0.000, 1.000))
locations['student_office'] = Pose(Point(2.932, -15.759, 0.000), Quaternion(0.000, 0.000, -0.563, 0.826))
# Publisher to manually control the robot (e.g. to stop it, queue_size=5)
self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)
# Subscribe to the move_base action server
self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
rospy.loginfo("Waiting for move_base action server...")
# Wait 60 seconds for the action server to become available
self.move_base.wait_for_server(rospy.Duration(60))
rospy.loginfo("Connected to move base server")
# A variable to hold the initial pose of the robot to be set by
# the user in RViz
initial_pose = PoseWithCovarianceStamped()
# Variables to keep track of success rate, running time,
# and distance traveled
n_locations = len(locations)
n_goals = 0
n_successes = 0
i = n_locations
distance_traveled = 0
start_time = rospy.Time.now()
running_time = 0
location = ""
last_location = ""
# Get the initial pose from the user
rospy.loginfo("*** Click the 2D Pose Estimate button in RViz to set the robot's initial pose...")
rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)
self.last_location = Pose()
rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose)
# Make sure we have the initial pose
while initial_pose.header.stamp == "":
rospy.sleep(1)
rospy.loginfo("Starting navigation test")
# Begin the main loop and run through a sequence of locations
#测试一直运行直到用户终止这个应用
while not rospy.is_shutdown():
# If we've gone through the current sequence,
# start with a new random sequence
if i == n_locations:
i = 0
#用sample()函数从目标位置集合中生成随机的位置序列
sequence = sample(locations, n_locations)
# Skip over first location if it is the same as
# the last location
if sequence[0] == last_location:
i = 1
# Get the next location in the current sequence
location = sequence[i]
# Keep track of the distance traveled.
# Use updated initial pose if available.
if initial_pose.header.stamp == "":
distance = sqrt(pow(locations[location].position.x -
locations[last_location].position.x, 2) +
pow(locations[location].position.y -
locations[last_location].position.y, 2))
else:
rospy.loginfo("Updating current pose.")
distance = sqrt(pow(locations[location].position.x -
initial_pose.pose.pose.position.x, 2) +
pow(locations[location].position.y -
initial_pose.pose.pose.position.y, 2))
initial_pose.header.stamp = ""
# Store the last location for distance calculations
last_location = location
# Increment the counters
i += 1
n_goals += 1
# Set up the next goal location
# 设置机器人从一个位置到另一个位置,并发送它到move_base行为服务器
self.goal = MoveBaseGoal()
self.goal.target_pose.pose = locations[location]
self.goal.target_pose.header.frame_id = 'map'
self.goal.target_pose.header.stamp = rospy.Time.now()
# Let the user know where the robot is going next
rospy.loginfo("Going to: " + str(location))
# Start the robot toward the next location
self.move_base.send_goal(self.goal)
# Allow 5 minutes to get there
finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))
# Check for success or failure
if not finished_within_time:
self.move_base.cancel_goal()
rospy.loginfo("Timed out achieving goal")
else:
state = self.move_base.get_state()
if state == GoalStatus.SUCCEEDED:
rospy.loginfo("Goal succeeded!")
n_successes += 1
distance_traveled += distance
rospy.loginfo("State:" + str(state))
else:
rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))
# How long have we been running?
running_time = rospy.Time.now() - start_time
running_time = running_time.secs / 60.0
# Print a summary success/failure, distance traveled and time elapsed
rospy.loginfo("Success so far: " + str(n_successes) + "/" +
str(n_goals) + " = " +
str(100 * n_successes/n_goals) + "%")
rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +
" min Distance: " + str(trunc(distance_traveled, 1)) + " m")
rospy.sleep(self.rest_time)
def update_initial_pose(self, initial_pose):
self.initial_pose = initial_pose
def shutdown(self):
rospy.loginfo("Stopping the robot...")
self.move_base.cancel_goal()
rospy.sleep(2)
self.cmd_vel_pub.publish(Twist())
rospy.sleep(1)
def trunc(f, n):
# Truncates/pads a float f to n decimal places without rounding
slen = len('%.*f' % (n, f))
return float(str(f)[:slen])
if __name__ == '__main__':
try:
NavTest()
rospy.spin()
except rospy.ROSInterruptException:
rospy.loginfo("AMCL navigation test finished.")
开始在终端中运行对应的节点
第一步:
roscore
第二步:
//连接自己的机器人
roslaunch felaim_2dnav felaim_robot.launch
第三步:
//连接kinect
roslaunch felaim_2dnav pioneer3at_fake_laser_freenect.launch
第四步:
roslaunch felaim_2dnav tb_nav_test.launch
第五步:
rosrun rviz rviz -d `rospack find felaim_2dnav`/launch/nav_test.rviz
第六步
//监听数据
rqt_console &
tb_nav_test.launch
<launch>
<param name="use_sim_time" value="false" />
<arg name="map" default="my_map.yaml" />
<node name="map_server" pkg="map_server" type="map_server" args="$(find felaim_2dnav)/maps/$(arg map)"/>
<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true">
<rosparam file="$(find felaim_2dnav)/config/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find felaim_2dnav)/config/costmap_common_params.yaml" command="load" ns="local_costmap" />
<rosparam file="$(find felaim_2dnav)/config/local_costmap_params.yaml" command="load" />
<rosparam file="$(find felaim_2dnav)/config/global_costmap_params.yaml" command="load" />
<rosparam file="$(find felaim_2dnav)/config/base_local_planner_params.yaml" command="load" />
<rosparam file="$(find felaim_2dnav)/config/nav_test_params.yaml" command="load" />
node>
<include file="$(find felaim_2dnav)/launch/tb_amcl.launch" />
<node pkg="felaim_2dnav" type="nav_test.py" name="nav_test" output="screen">
<param name="rest_time" value="10" />
<param name="fake_test" value="false" />
node>
launch>
上图是终端打出的INFO,可以看出两次success的信息,目标位置也是在之前python文件中定义是位置列表.但LZ发现还是会有一些问题,如果障碍物不在地图上,那机器人就会有些迷糊…路径规划有时候会出地图…但是基本的功能是可以实现的,加上最近下雨,走廊里全是雨伞,跑的结果就是一般~(≧▽≦)/~啦啦啦,后续还得考虑下怎么进行修改^_^