参考文献:https://learnopengl.com/#!Getting-started/OpenGL
前置:OpenGL基础27:网格
有了mesh类之后,接下来就是实现一个model类将各个mesh拼成一个模型
首先是模型的创建:很好理解,就是一次绘制其所有的mesh:
public:
Model(const GLchar* path)
{
this->loadModel(path);
}
void Draw(Shader shader)
{
for (GLuint i = 0; i < this->meshes.size(); i++)
this->meshes[i].Draw(shader);
}
接下来就是模型的导入:
其中的scene对象是Assimp的数据结构的根对象(场景对象),一旦有了场景对象,就可以从已加载模型中获取所有需要的数据
有以下几种常见的设置:
void loadModel(string path)
{
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
this->directory = path.substr(0, path.find_last_of('/'));
this->processNode(scene->mRootNode, scene);
}
注意一下代码中的 this->directory 路径,样例中是指向了对应模型的文件夹,但是有的时候模型文件内的贴图路径是绝对路径又或者默认退回上一层目录,这个时候要不修改模型文件,要不就修改这里的 this->directory
对于Assimp的结构,每个节点包含一个网格集合的索引,每个索引指向一个在场景对象中特定的网格位置,如果想要获取并处理这些网格索引,就需要进行类似于树递归的操作:
//依次处理所有的场景节点
void processNode(aiNode* node, const aiScene* scene)
{
for (GLuint i = 0; i < node->mNumMeshes; i++)
{
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
}
for (GLuint i = 0; i < node->mNumChildren; i++)
this->processNode(node->mChildren[i], scene);
}
用上面的方法,就可以获得每个节点的网格了,当然对于原始的 aimesh 对象要将它们全部转换成我们自己定义的网格对象:这个很好办,只需要获取每个网格相关的属性并把这些属性储存到我们自己的对象就可以了,包括处理顶点坐标、法线和纹理坐标、顶点索引以及材质
mMaterials
数组//将所有原始的aimesh对象全部转换成我们自己定义的网格对象
Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{
vector vertices;
vector indices;
vector textures;
//处理顶点坐标、法线和纹理坐标
for (GLuint i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector;
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
if (mesh->mTextureCoords[0])
{
glm::vec2 vec;
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
//处理顶点索引
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for (GLuint j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
//处理材质
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
vector diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
vector specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
return Mesh(vertices, indices, textures);
}
对于纹理的读取:
获取了aimaterial对象后,可以从中加载网格的diffuse或/和specular纹理,每个材质都储存了一个数组,这个数组为每个纹理类型提供纹理位置,不同的纹理类型都以aiTextureType_为前缀
//遍历所有给定纹理类型的纹理位置,获取纹理的文件位置,然后加载生成纹理
vector loadMaterialTextures(aiMaterial* mat, int type, string typeName)
{
vector textures;
for (GLuint i = 0; i < mat->GetTextureCount((aiTextureType)type); i++)
{
aiString str;
mat->GetTexture((aiTextureType)type, i, &str);
GLboolean skip = false;
for (GLuint j = 0; j < textures_loaded.size(); j++)
{
if (std::strcmp(textures_loaded[j].path.C_Str(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true;
break;
}
}
if (!skip)
{
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);
this->textures_loaded.push_back(texture);
}
}
return textures;
}
有了model.h和mesh.h之后,在主代码中生成模型就非常简单了,只需要考虑其光照和空间变换
可以将之前的“正方体箱子”替换成全新的箱子模型
主代码如下(删除了之前的所有箱子,保留了所有光源):
#include
#include
#define GLEW_STATIC
#include
#include"Shader.h"
#include"Camera.h"
#include
#include
#include
#include"Mesh.h"
#include"Model.h"
#include
#include
bool keys[1024];
Camera camera;
GLfloat lastX, lastY;
bool firstMouse = true;
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void cameraMove();
const GLuint WIDTH = 800, HEIGHT = 600;
int main()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
glfwMakeContextCurrent(window);
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
glewExperimental = GL_TRUE;
glewInit();
int width, height;
glfwGetFramebufferSize(window, &width, &height);
glViewport(0, 0, width, height);
Shader shaderObj("ObjVShader.vert", "ObjFShader.frag");
Shader shaderLight("LightVShader.vert", "LightFShader.frag");
GLfloat vertices[] =
{
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f
};
glm::vec3 positions[] =
{
glm::vec3(0.0f, -1.78f, 0.0f),
glm::vec3(0.0f, -0.89f, 0.0f),
glm::vec3(0.0f, -0.0f, 0.0f),
glm::vec3(-2.0f, -1.78f, 0.0f),
glm::vec3(-2.0f, -0.89f, 0.0f),
glm::vec3(-3.0f, -1.78f, 0.0f),
glm::vec3(-2.0f, -1.78f, 1.0f),
glm::vec3(-1.0f, -1.78f, -4.0f),
};
glm::vec3 pointLightPositions[] =
{
glm::vec3(-1.0f, 0.0f, -2.0f),
glm::vec3(0.0f, -1.0f, 2.0f),
glm::vec3(-5.0f, -1.0f, 1.0f),
};
GLuint VBO, VAO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
GLuint lightVAO;
glGenVertexArrays(1, &lightVAO);
glBindVertexArray(lightVAO);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
//VBO数据已经绑定且我们就用之前的顶点数据,所以无需再管理VBO
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
glEnable(GL_DEPTH_TEST);
Model ourModel("Object/wood/file.fbx");
while (!glfwWindowShouldClose(window))
{
glfwPollEvents();
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);
cameraMove();
shaderLight.Use();
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
glm::mat4 model = glm::mat4(1.0f);
GLint modelLoc = glGetUniformLocation(shaderLight.Program, "model");
GLint viewLoc = glGetUniformLocation(shaderLight.Program, "view");
GLint projLoc = glGetUniformLocation(shaderLight.Program, "projection");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
glBindVertexArray(lightVAO);
for (int i = 0; i <= 2; i++)
{
model = glm::translate(glm::mat4(1.0f), pointLightPositions[i]);
model = glm::scale(model, glm::vec3(0.2f));
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glDrawArrays(GL_TRIANGLES, 0, 36);
}
shaderObj.Use();
glUniform3f(glGetUniformLocation(shaderObj.Program, "sunLight.direction"), -0.2f, -1.0f, -0.3f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "sunLight.diffuse"), 0.4f, 0.4f, 0.4f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "sunLight.specular"), 0.5f, 0.5f, 0.5f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[0].position"), pointLightPositions[0].x, pointLightPositions[0].y, pointLightPositions[0].z);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[0].diffuse"), 0.8f, 0.8f, 0.8f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[0].specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[0].k0"), 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[0].k1"), 0.09);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[0].k2"), 0.032);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[1].position"), pointLightPositions[1].x, pointLightPositions[1].y, pointLightPositions[1].z);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[1].diffuse"), 0.8f, 0.8f, 0.8f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[1].specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[1].k0"), 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[1].k1"), 0.09);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[1].k2"), 0.032);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[2].position"), pointLightPositions[2].x, pointLightPositions[2].y, pointLightPositions[2].z);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[2].diffuse"), 0.8f, 0.8f, 0.8f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "pointLights[2].specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[2].k0"), 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[2].k1"), 0.09);
glUniform1f(glGetUniformLocation(shaderObj.Program, "pointLights[2].k2"), 0.032);
glUniform3f(glGetUniformLocation(shaderObj.Program, "spotLight.position"), camera.Position.x, camera.Position.y, camera.Position.z);
glUniform3f(glGetUniformLocation(shaderObj.Program, "spotLight.direction"), camera.Front.x, camera.Front.y, camera.Front.z);
glUniform3f(glGetUniformLocation(shaderObj.Program, "spotLight.diffuse"), 1.0f, 1.0f, 1.0f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "spotLight.specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "spotLight.k0"), 1.0f);
glUniform1f(glGetUniformLocation(shaderObj.Program, "spotLight.k1"), 0.09);
glUniform1f(glGetUniformLocation(shaderObj.Program, "spotLight.k2"), 0.032);
glUniform1f(glGetUniformLocation(shaderObj.Program, "spotLight.cutOff"), glm::cos(glm::radians(12.5f)));
glUniform1f(glGetUniformLocation(shaderObj.Program, "spotLight.outCutOff"), glm::cos(glm::radians(16.0f)));
glUniform3f(glGetUniformLocation(shaderObj.Program, "ambient"), 0.2f, 0.2f, 0.2f);
glUniform3f(glGetUniformLocation(shaderObj.Program, "viewPos"), camera.Position.x, camera.Position.y, camera.Position.z);
modelLoc = glGetUniformLocation(shaderObj.Program, "model");
viewLoc = glGetUniformLocation(shaderObj.Program, "view");
projLoc = glGetUniformLocation(shaderObj.Program, "projection");
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
for (int i = 0; i <= 7; i++)
{
model = glm::translate(glm::mat4(1.0f), positions[i]);
model = glm::scale(model, glm::vec3(0.01f));
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
ourModel.Draw(shaderObj);
}
glBindVertexArray(0);
glfwSwapBuffers(window);
}
glDeleteVertexArrays(1, &VAO);
glDeleteBuffers(1, &VBO);
glfwTerminate();
return 0;
}
GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
void cameraMove()
{
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
GLfloat cameraSpeed = 1.0f * deltaTime;
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(Camera_Movement(FORWARD), deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(Camera_Movement(BACKWARD), deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(Camera_Movement(LEFT), deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(Camera_Movement(RIGHT), deltaTime);
}
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if (action == GLFW_PRESS) //如果当前是按下操作
keys[key] = true;
else if (action == GLFW_RELEASE) //松开键盘
keys[key] = false;
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos;
GLfloat sensitivity = 0.05;
xoffset *= sensitivity;
yoffset *= sensitivity;
camera.ProcessMouseMovement(xoffset, yoffset);
}
完整的model.h代码:
#ifndef MODEL_H
#define MODEL_H
#include
#include
#include"Shader.h"
#include"Mesh.h"
#include
#include
#include
#include
#include
#include
#include
using namespace std;
GLint TextureFromFile(const char* path, string directory);
class Model
{
public:
Model(const GLchar* path)
{
this->loadModel(path);
}
void Draw(Shader shader)
{
for (GLuint i = 0; i < this->meshes.size(); i++)
this->meshes[i].Draw(shader);
}
private:
vector meshes;
string directory;
vector textures_loaded;
void loadModel(string path)
{
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
this->directory = path.substr(0, path.find_last_of('/'));
this->processNode(scene->mRootNode, scene);
}
//依次处理所有的场景节点
void processNode(aiNode* node, const aiScene* scene)
{
for (GLuint i = 0; i < node->mNumMeshes; i++)
{
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
}
for (GLuint i = 0; i < node->mNumChildren; i++)
this->processNode(node->mChildren[i], scene);
}
//将所有原始的aimesh对象全部转换成我们自己定义的网格对象
Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{
vector vertices;
vector indices;
vector textures;
//处理顶点坐标、法线和纹理坐标
for (GLuint i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector;
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
if (mesh->mTextureCoords[0]) //不一定有纹理坐标
{
glm::vec2 vec;
//暂时只考虑第一组纹理坐标,Assimp允许一个模型的每个顶点有8个不同的纹理坐标,只是可能用不到
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
//处理顶点索引
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for (GLuint j = 0; j < face.mNumIndices; j++)
{
indices.push_back(face.mIndices[j]);
}
}
//处理材质
if (mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
vector diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
vector specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
}
return Mesh(vertices, indices, textures);
}
//遍历所有给定纹理类型的纹理位置,获取纹理的文件位置,然后加载生成纹理
vector loadMaterialTextures(aiMaterial* mat, int type, string typeName)
{
vector textures;
cout << typeName << endl;
for (GLuint i = 0; i < mat->GetTextureCount((aiTextureType)type); i++)
{
aiString str;
mat->GetTexture((aiTextureType)type, i, &str);
GLboolean skip = false;
for (GLuint j = 0; j < textures_loaded.size(); j++)
{
if (std::strcmp(textures_loaded[j].path.C_Str(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true;
break;
}
}
//对应材质已存在就没必要再次读取了
if (!skip)
{
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);
this->textures_loaded.push_back(texture);
}
}
return textures;
}
};
GLint TextureFromFile(const char* path, string directory)
{
string filename = string(path);
filename = directory + '/' + filename;
cout << filename << endl;
GLuint textureID;
glGenTextures(1, &textureID);
int width, height;
unsigned char* image = SOIL_load_image(filename.c_str(), &width, &height, 0, SOIL_LOAD_RGB);
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
SOIL_free_image_data(image);
return textureID;
}
#endif
对于着色器,只需要修改材质的名字就好了:
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 texture;
out vec2 texIn;
out vec3 normalIn;
out vec3 fragPosIn;
uniform mat4 model; //模型矩阵
uniform mat4 view; //观察矩阵
uniform mat4 projection; //投影矩阵
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0);
texIn = texture;
fragPosIn = vec3(model * vec4(position, 1.0f));
normalIn = mat3(transpose(inverse(model))) * normal;
}
///////////////////////////////////////////////////////////////////////////
#version 330 core
struct Material
{
sampler2D texture_diffuse1; //贴图
sampler2D texture_specular1; //镜面贴图
sampler2D emission; //放射贴图
float shininess; //反光度
};
struct SunLight //平行光
{
vec3 direction;
vec3 diffuse;
vec3 specular;
};
struct PointLight //点光源
{
vec3 position;
vec3 diffuse;
vec3 specular;
float k0, k1, k2;
};
struct SpotLight //聚光灯
{
vec3 position;
vec3 direction;
vec3 diffuse;
vec3 specular;
float k0, k1, k2;
float cutOff, outCutOff;
};
uniform vec3 ambient;
uniform Material material;
uniform SunLight sunLight;
uniform PointLight pointLights[3];
uniform SpotLight spotLight;
vec3 CalcSunLight(SunLight light, vec3 normal, vec3 viewDir);
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir);
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir);
out vec4 color;
uniform vec3 viewPos;
in vec2 texIn;
in vec3 fragPosIn;
in vec3 normalIn;
void main()
{
//环境光
vec3 ambient = ambient * vec3(texture(material.texture_diffuse1, texIn));
vec3 viewDir = normalize(viewPos - fragPosIn);
vec3 normal = normalize(normalIn);
vec3 result = CalcSunLight(sunLight, normal, viewDir);
for (int i = 0; i <= 2; i++)
result = result + CalcPointLight(pointLights[i], normal, fragPosIn, viewDir);
result = result + CalcSpotLight(spotLight, normal, fragPosIn, viewDir);
color = vec4(result, 1.0f);
}
vec3 CalcSunLight(SunLight light, vec3 normal, vec3 viewDir)
{
vec3 lightDir = normalize(-light.direction);
float diff = max(dot(normal, lightDir), 0.0f);
vec3 diffuse = light.diffuse * (diff * vec3(texture(material.texture_diffuse1, texIn)));
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = light.specular * (spec * vec3(texture(material.texture_specular1, texIn)));
return diffuse + specular;
}
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
vec3 lightDir = normalize(light.position - fragPos);
float diff = max(dot(normal, lightDir), 0.0f);
vec3 diffuse = light.diffuse * (diff * vec3(texture(material.texture_diffuse1, texIn)));
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = light.specular * (spec * vec3(texture(material.texture_specular1, texIn)));
float dis = length(light.position - fragPos);
float attenuation = 1.0f / (light.k0 + light.k1 * dis + light.k2 * (dis * dis));
diffuse *= attenuation;
specular *= attenuation;
return diffuse + specular;
}
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
vec3 lightDir = normalize(light.position - fragPos);
float theta = dot(lightDir, normalize(-light.direction));
float lightSoft = clamp((theta - light.outCutOff) / (light.cutOff - light.outCutOff), 0.0f, 1.0f);
float diff = max(dot(normal, lightDir), 0.0f);
vec3 diffuse = light.diffuse * (diff * vec3(texture(material.texture_diffuse1, texIn)));
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = light.specular * (spec * vec3(texture(material.texture_specular1, texIn)));
float dis = length(light.position - fragPos);
float attenuation = 1.0f / (light.k0 + light.k1 * dis + light.k2 * (dis * dis));
diffuse *= attenuation * lightSoft;
specular *= attenuation * lightSoft;
return diffuse + specular;
}