- 1185. 单词游戏(欧拉路径)
Landing_on_Mars
#欧拉回路和欧拉路径游戏图论
活动-AcWing有N个盘子,每个盘子上写着一个仅由小写字母组成的英文单词。你需要给这些盘子安排一个合适的顺序,使得相邻两个盘子中,前一个盘子上单词的末字母等于后一个盘子上单词的首字母。请你编写一个程序,判断是否能达到这一要求。输入格式第一行包含整数T,表示共有T组测试数据。每组数据第一行包含整数N,表示盘子数量。接下来N行,每行包含一个小写字母字符串,表示一个盘子上的单词。一个单词可能出现多次。
- 12118 - Inspector‘s Dilemma (UVA)
天天AZ
UVA图论算法
题目链接如下:OnlineJudge脑雾严重,这道题一开始我想的方向有问题.....后来看了别人的题解才写出来的.....用的是欧拉路径的充要条件;以及数连通块。需要加的高速路数目=连通块个数-1+sum(每个连通块中连成欧拉路径需要加的高速路数目)。#include#include//#definedebugintV,E,T,a,b,tot,odd,kase=0;intarc[1001][100
- 欧拉路 与 欧拉回路
Teresa_李庚希
定义欧拉路:从图中一个点s出发,到图中的一点t,经过每条边且每条边仅经过一次欧拉回路:欧拉路中s==t判定条件无向图所有边联通存在欧拉路:度数为奇数的点的个数为0或2存在欧拉回路:度数为奇数的点的个数为0有向图所有边联通存在欧拉路:所有点的入度==出度或除起点(出度==入度+1)和终点(入度==出度+1)外,其他点的入度==出度存在欧拉回路:除起点(出度==入度+1)和终点(入度==出度+1)外,
- 欧拉路径、欧拉回路、欧拉图傻傻分不清楚?看这一篇就够了!
一棵油菜花
算法篇深度优先算法c++笔记图论
推荐在cnblogs阅读欧拉路径、回路、图前言当一手标题党,快乐~之前一直分不清楚,写篇笔记分辨一下。欧拉路径可以一笔画的路径,称为欧拉路径。不要求起点终点为同一点。判定:有向图:图中只有一个出度比入度大111的点(起点),与一个入度比出度大111的点(终点),其余点出入度相等。无向图:图中只有两个奇点(起点和终点),其余点都是偶点。当然,将有向边视作无向边后,路径必须连通。欧拉回路在欧拉路径的基
- 1380 一笔画问题
tiger_mushroom
算法深度优先图论
如果一个无向图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。#includeusingnamespacestd;#defineN510intg[N][N],d[N],c[N],n,m,reckon,oddity_point,lt;voiddfs(inti){for(intj=1;j>n>>m;intx,y;memset(g,0,sizeof(g));for(in
- 欧拉回路&欧拉路【详解】
tiger_mushroom
欧拉回路欧拉路深度优先算法
1.引入2.概念3.解决方法4.例题5.回顾1.引入经典的七桥问题哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?你怎样证明?后来大数学家欧拉把它转化成一个几何问题——一笔画问题。我们的大数学家欧拉,找到了它的重要条件1.奇点的数目不是0个就是2个奇点:就是度为奇数(有向图是判断出度与入度是否相等),反之为偶点有向图1、连
- 拆点成边来建图 +BEST定理:ABC336G
Qres821
图论BEST定理
https://www.luogu.com.cn/problem/AT_abc336_g考虑一个状态(a,b,c,d)(a,b,c,d)(a,b,c,d)要出现kkk次,如果相当于每次加1个字符,相当于要从(a,b,c)(a,b,c)(a,b,c)走到(b,c,d)(b,c,d)(b,c,d)走kkk次。因此我们就可以根据这样建图。问题转化为求一个图的欧拉路径/欧拉回路条数。由于起终点相同的边没有
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 代码随想录算法训练营第三十天|总结、332.重新安排行程、51.N皇后、37.解数独
Buuuleven.(程序媛
算法数据结构javaleetcode开发语言
代码随想录(programmercarl.com)总结332.重新安排行程欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。题目中说必然存在一条有效路径,所以至少是半欧拉图,也可以是欧拉图。深度优先搜索(DFS):对每一个可能的分支路径深入到不能再深
- 【算法每日一练]-图论(保姆级教程篇14 )#会议(模板题) #医院设置 #虫洞 #无序字母对 #旅行计划 #最优贸易
亦歌希望你变强啊
图论算法图论深度优先数据结构c++
目录今日知识点:求数的重心先dfs出d[1]和cnt[i],然后从1进行dp求解所有d[i]两两点配对的建图方式,检查是否有环无向图欧拉路径+路径输出topo+dp求以i为终点的游览城市数建立分层图转化盈利问题成求最长路会议(模板题)医院设置虫洞无序字母对旅行计划最优贸易会议(模板题)思路:补充:首先,阅读题目可以看出来,这道题目实际上就是求树的重心。树的重心:找到一个点,其所有的子树中最大的子树
- C++ 图论算法之欧拉路径、欧拉回路算法(一笔画完)
一枚大果壳
c++图论算法欧拉欧拉回路
公众号:编程驿站1.欧拉图本文从哥尼斯堡七桥的故事说起。哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。1736年瑞士数学家欧拉(Euler)发表了论文《哥尼斯堡七桥问题》。论文中使用图论理论解决哥尼斯堡七桥问题,欧拉图由此而来。论文中欧拉证明了如下定理:一个非空连通图当且仅当每
- 【题解】洛谷P3443 [POI2006] LIS-The Postman 题解
conti123
C++题解c++
P3443题意分析Code题意原题链接求一条以111为起点的欧拉回路,使得给定路口序列在路线及求出的欧拉回路序列中出现。分析首先,肯定是要存在欧拉路径的。而有向图中存在欧拉路径须满足以下条件:图去掉孤立点后联通和每个点的入度等于出度。注意到规定的每个路口序列都必须在路线中连续出现,及如果我们存在路线,我们不能改变走这些规定的序列的顺序。那么相当于这些边是被限制死的了,不能改变,所以可以将它们合并为
- 最小字典序欧拉路径
mxYlulu
队内集训心得欧拉路径
欧拉路就是所有边都走一次,也只走一次。欧拉回路就是能够回到起点,欧拉路径没有这么多要求。算法本质是这样的:从起点开始,尽可能地不去走桥(走完之后会把图分成两半),而去走其他边,这样的输出是欧拉路径。但是判桥的过程较为麻烦,我们可以采取这样的手段。如果起点开始有两条边,一条边是应该走的边,另一条是桥。如果我们采用dfsdfsdfs的方式先遍历到底,直到无路可走的时候才加入答案栈中,我们容易知道的是最
- PAT 甲级 刷题日记|A 1126 Eulerian Path (25 分)
九除以三还是三哦
单词积累even偶数odd奇数Eulerianpath欧拉路径connectedgraph连通图题目Ingraphtheory,anEulerianpathisapathinagraphwhichvisitseveryedgeexactlyonce.Similarly,anEuleriancircuitisanEulerianpathwhichstartsandendsonthesameverte
- 用欧拉路径判断图同构推出reverse合法性:1116T4
Qres821
欧拉路径构造
http://cplusoj.com/d/senior/p/SS231116D假设我们要把aaa变成bbb,我们在aia_iai和ai+1a_{i+1}ai+1之间连边,bbb同理,则aaa能变成bbb的充要条件是两图A,BA,BA,B同构。必要性显然,因为无论如何reverse都不会改变图的形态。我们现在要证明的是图的任意欧拉路径都可以通过reverse构造出来。考虑第一个ai≠bia_i\ne
- 欧拉回路和欧拉路径
王木木很酷_
#数据结构与算法算法数据结构java开发语言
目录欧拉回路基础欧拉回路的定义欧拉回路的性质判断图中是否存在欧拉回路的java代码实现寻找欧拉回路的三个算法Hierholzer算法详细思路代码实现欧拉路径欧拉路径的定义欧拉路径的性质欧拉回路基础欧拉回路的定义欧拉回路遍历了所有的边,也就意味着遍历了所有的点,但这并不能代表有欧拉回路的地方都有哈密尔顿回路的,如下图的例子。欧拉回路的性质上图四个点的度数都是奇数,所以不存在欧拉回路。欧拉回路的条件:
- 图论11-欧拉回路与欧拉路径+Hierholzer算法实现
大大枫
图论图论算法
文章目录1欧拉回路的概念2欧拉回路的算法实现3Hierholzer算法详解4Hierholzer算法实现4.1修改Graph,增加API4.2Graph.java4.3联通分量类4.4欧拉回路类1欧拉回路的概念2欧拉回路的算法实现privatebooleanhasEulerLoop(){CCcc=newCC(G);if(cc.count()>1)returnfalse;for(intv=0;vre
- 图论(欧拉路径)
炒饭加蛋挞
图论
理论:所有边都经过一次,若欧拉路径,起点终点相同,欧拉回路有向图欧拉路径:恰好一个out=in+1,一个in=out+1,其余in=out有向图欧拉回路:所有in=out无向图欧拉路径:两个点度数奇,其余偶无向图欧拉回路:全偶基础练习P7771【模板】欧拉路径P2731[USACO3.3]骑马修栅栏RidingtheFencesP1341无序字母对进阶P3520[POI2011]SMI-Garba
- 学习笔记:欧拉图 & 欧拉路
tsqtsqtsq0309
学习笔记
欧拉图&欧拉路定义图中经过所有边恰好一次的路径叫欧拉路径(也就是一笔画)。如果此路径的起点和终点相同,则称其为一条欧拉回路。欧拉回路:通过图中每条边恰好一次的回路。欧拉通路:通过图中每条边恰好一次的通路。欧拉图:具有欧拉回路的图。半欧拉图:具有欧拉通路但不具有欧拉回路的图。性质欧拉图中所有顶点的度数都是偶数。若GGG是欧拉图,则它为若干个环的并,且每条边被包含在奇数个环内。判别法无向图是欧拉图当且
- 读图数据库实战笔记01_初识图
躺柒
读图数据库实战图数据库TinkerPopGremlin图
1.图论1.1.起源于莱昂哈德·欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文1.2.要解决这个问题,该图需要零个或两个具有奇数连接的节点1.3.任何满足这一条件的图都被称为欧拉图1.4.如果路径只访问每条边一次,则该图具有欧拉路径1.5.如果路径起点和终点相同,则该图具有欧拉回路,或称为欧拉环2.图2.1.顶点和边的集合2.2.示例2.2.1.路线图2.2.2.组织结构图2.3.当要思
- PAT甲级1126 Eulerian Path (25 分)
ladedah
什么是欧拉路径?欧拉路径是无向连通图中的一条路径,该路径经过图的每一条边且仅经过一次。如果路径起点和终点相同,则称“欧拉回路”。具有欧拉回路的图称“欧拉图”。如何判断图中是否存在欧拉路径?由欧拉路径的定义可知,若图中存在欧拉路径,则该图必是一个连通图(1),其次,图中度数为奇数的点的个数必须为0或2(2),若度数为奇数的点的个数为0则是欧拉回路,若个数为2则是非欧拉回路的欧拉路径在此题中称为"Se
- 信息学奥赛一本通(C++版) 第三部分 数据结构 第四章 图论算法
mrcrack
信息学奥赛一本通(C++版)NOIP提高组复赛
总目录详见:https://blog.csdn.net/mrcrack/article/details/86501716信息学奥赛一本通(C++版)第三部分数据结构第四章图论算法http://ybt.ssoier.cn:8088/第一节图的遍历//1341【例题】一笔画问题//在想,是输出欧拉路,还是欧拉回路//从哪点开始遍历,//点的数据范围,边的数据范围//欧拉路的理解,经过所有点,欧拉回路的
- cf1038E(暴力DP/bfs)
qkoqhh
DPbfs
一个块可以看做是无向图上的边,然后就变成了在无向图上跑欧拉路径。。4个点应该是可以随便暴力了。。不过边比较多。。如果考虑哪些边不走,能注意到2条重边可以构成一个简单环。。所以如果不走肯定是亏的。。所以对重边来说,最多只能不经过一条边。。而本质不同的边其实也就8条。。拆出来就变成16条。。然后暴力bfs/DP或者直接爆搜应该就可以了。。。#include#defineinc(i,l,r)for(in
- [cf1038E][欧拉路]
aiyuneng5167
数据结构与算法
http://codeforces.com/contest/1038/problem/EE.MaximumMatchingtimelimitpertest2secondsmemorylimitpertest256megabytesinputstandardinputoutputstandardoutputYouaregivennnblocks,eachofthemisoftheform[color
- 欧拉路径(欧拉环游、欧拉回路)
thdwx
算法数据结构图论
一个流行的游戏是用铅笔画这些图,但是图中的每一条边都只能被画一次,在画图过程中铅笔不能离开纸面。难度更高的问题是,不光要一笔画完图,并且起点和终点还要落在同一处。如果我们将上面的三个图形都看作图数据结构,那么这个画图问题就是一个图论问题。如果在一个无向图中,找到一条路径,使得每一条边都被访问并且只被访问一次,那么这条路径就称为欧拉路径。如果起点与终点一致就成为欧拉回路,否则就是欧拉环游。我们能想到
- 寒假水题集
2013hlq20
OIerC++
2月1日1、UVALive4864很水的数位dp2、CF81D随便构造(好像我用的那个构造本来是错的,但是AC了)3、UVALive5058似乎涉及到拓扑序,组合数之类,但是要先构造一棵树4、CF486E正反两遍nlogn的LIS得到的信息2月2日1、CFGym100016D简单的推理2、CFGym100016J最初以为是贪心,结果发现没有贪心策略,然后就dp了3、CF508D这么裸的欧拉路径,都
- 并查集的相关题目
qdlgdx_lsy
算法并查集pojhdu
这几天一直在刷并查集的题目,对于并查集的较难的题目,等着功力深厚了在做吧。先说一下杭电上面的题目:并查集专题链接http://acm.hdu.edu.cn/problemclass.php?id=721hdu1116:先用并查集判断图是否联通,再看是不是存在欧拉路径。(利用欧拉路径需要满足的顶点度数的要求).要注意题意的转换hdu1142:这题没有用并查集解决。先用dijkstra算法求出终点到其
- 欧拉路径 O(E)
千秋TʌT
java算法前端
|欧拉路径O(E)|INIT:adj[][]置为图的邻接表;cnt[a]为a点的邻接点个数;|CALL:elpath(0);注意:不要有自向边\*==================================================*/intadj[V][V],idx[V][V],cnt[V],stk[V],top;intpath(intv){for(intw;cnt[v]>0;v=
- 图系列(四)欧拉通路与欧拉回路
朝阳映木
数据结构与算法算法与数据结构欧拉回路有向图
欧拉通路与欧拉回路之前,写了图系列一二三,现在出四啦!这也意味着,对于图的部分,可以说50%以上常用的内容就已经过了一遍了。欧拉路的部分会稍微难一点,主要是我们要和定义打交道了。至于其他图的理论,我感觉比较有用的就不剩下多少了。可能就还有同构什么的,还会有一些探讨的空间。好长一段时间没有写东西啦!这篇文章,大致会经过几次修改完成。主要参考了Leetcode的这道题——重新安排行程。其实,这道题目,
- 欧拉路和欧拉回路
流苏贺风
图论算法算法
欧拉路和欧拉回路算法原理一,无向图的欧拉欧拉路欧拉回路二,有向图的欧拉欧拉路欧拉回路大前提:欧拉图都是联通的以下定义摘自oiwiki通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路。通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路。具有欧拉回路的无向图或有向图称为欧拉图。具有欧拉通路但不具有欧拉回路的无向图或有向图称为半欧拉图。非形式化地讲,欧拉图就是从任意一个点开始都可以一笔画完整个
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,