- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- OpenCV3最常用的基本操作
HeoLis
OpenCV介绍OpenCV的全称是OpenSourceComputerVisionLibrary,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。以上是维基百科关于OpenCV的介绍,简单来说它就是处理图
- EI检索-机器视觉、图像处理与影像技术国际学术会议(MVIPIT 2023)邀您参会!
诗远Yolanda
图像处理人工智能计算机视觉
机器视觉是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。而图像处理等技术的快速发展也推动了机器视觉的发展。机器视觉在我国具有广泛的工业应用,核心功能包括:测量,检测,识别,定位等。第一届机器视觉、图像处理与影像技术国际学术会议(MVIPIT2023)将于2023年7月26日-28日在浙江杭
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 图形几何算法 -- 凸包算法
CAD三维软件二次开发
算法学习算法c#3d几何学
前言常用凸包算法包括GrahamScan算法和JarvisMarch(GiftWrapping)算法,在这里要简单介绍的是GrahamScan算法。1、概念凸包是一个点集所包围的最小的凸多边形。可以想象用一根绳子围绕着一群钉子,绳子所形成的轮廓便是这些钉子的凸包。在计算几何中,凸包得到了广泛的应用,涉及领域包括模式识别、图像处理和优化问题等。2、算法原理凸包算法的目标是从给定的点集(在二维平面中)
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- 机器学习算法深度总结(5)-逻辑回归
婉妃
1.模型定义逻辑回归属于基于概率分类的学习法.基于概率的模式识别是指对模式x所对应的类别y的后验概率禁行学习.其所属类别为后验概率最大时的类别:预测类别的后验概率,可理解为模式x所属类别y的可信度.逻辑回归(logistic),使用线性对数函数对分类后验概率进行模型化:上式,分母是满足概率总和为1的约束条件的正则化项,参数向量维数为:考虑二分类问题:使用上述关系式,logistic模型的参数个数从
- 计算机视觉概念科普
极客代码
玩转AI人工智能图像处理计算机视觉深度学习
计算机视觉(ComputerVision,CV)是一门多学科交叉的科学,旨在让计算机具备“看”的能力,即通过图像或视频数据来理解世界。它结合了信号处理、图像处理、模式识别、机器学习等多个领域的技术,让计算机能够执行诸如识别、分类、追踪等复杂的视觉任务。本文将深入探讨计算机视觉的核心概念和技术。一、计算机视觉概述计算机视觉是一门研究如何让计算机“看”世界并从中获取信息的科学。它主要关注如何处理、分析
- 机器学习(ML)算法分类
活蹦乱跳酸菜鱼
机器学习
机器学习(ML)算法是一个广泛而多样的领域,涵盖了多种用于数据分析和模式识别的技术。以下是一些常见的机器学习算法分类及其具体算法:一、监督学习算法监督学习算法使用标记(即已知结果)的训练数据来训练模型,以便对新数据进行预测。线性回归:用于建立连续变量之间的关系,通过拟合一条直线或超平面来预测新数据的输出值。逻辑回归:虽然名称中包含“回归”,但实际上是用于分类问题,特别是二分类问题。通过将线性回归模
- 让数据说话:人工智能与六西格玛的完美结合
张驰课堂
人工智能六西格玛
当人工智能与六西格玛结合,企业可以充分利用人工智能技术的数据处理、预测分析和智能决策支持能力,实现数据驱动的决策、质量控制和流程优化,从而提高企业的效率和竞争力。下面张驰咨询给大家具体的介绍:1、数据驱动决策六西格玛侧重于数据分析和决策制定,而人工智能可以提供更强大的数据处理和分析能力。通过人工智能技术,可以自动收集和整理大量的数据,并进行有效的数据挖掘和模式识别。这些数据分析结果可以为六西格玛项
- 神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)
MarkHD
深度学习神经网络计算机视觉
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 六、图像的几何变换
云峰天际
计算机视觉人工智能opencv人工智能计算机视觉
文章目录前言一、镜像变换二、缩放变换前言在计算机视觉中,图像几何变换是指对图像进行平移、旋转、缩放、仿射变换和镜像变换等操作,以改变图像的位置、尺寸、形状或视角,而不改变图像的内容。这些变换在图像处理、模式识别、机器人视觉、医学影像处理等领域具有广泛的应用。通过图像几何变换,可以实现图像的校正、配准、增强和重建等功能,为后续的图像分析和理解提供了重要的基础。一、镜像变换水平镜像(水平翻转)其原理是
- RBF神经网络中的RBF的英文全称是什么,是用来干什么的?
神笔馬良
神经网络人工智能深度学习
问题描述:RBF神经网络中的RBF的英文全称是什么,是用来干什么的?问题解答:RBF神经网络中的RBF是径向基函数(RadialBasisFunction)的缩写。径向基函数是一种在机器学习和模式识别中常用的函数类型,它们通常用于构建非线性模型。在RBF神经网络中,径向基函数被用作隐藏层的激活函数,用来将输入数据从输入空间映射到一个高维的特征空间,从而实现非线性的数据拟合和模式识别。具体来说,径向
- 用脑想问题还是用心驱动脑?
风口猪炒股指标
抢财猫股票课堂我的思想大火拼脑心关系
昨天回答了几个朋友的问题,我发现提问题的人很少,这让我想起之前讲的小妞子的故事,我问了她好几个月的同一句话:你有问题吗?结果她很反感,嘿嘿。其实吧,我讲的很多东西都是实的,反而我们感知不到的日常以为真的东西其实是不真实的。比如说眼见为实,真正是眼睛看到的是你认识的真实的吗?不是,因为你脑子里有模式识别了才被识别出来,如果脑子里没有模式就无法识别,即便眼睛看到了也会忽略掉。那追问下去,如果脑子无法识
- 【专题】2023年中国手术机器人行业专题报告PDF合集分享(附原数据表)
原文链接:https://tecdat.cn/?p=34144仿生机器人作为一类结合了仿生学原理的机器人,具备自主决策和规划行动的能力,正逐渐进入大众视野。它们的核心技术要素包括感知与认知技术、运动与控制技术、人机交互技术和自主决策技术。阅读原文,获取专题报告合集全文,解锁文末68份仿生机器人相关行业研究报告。感知与认知技术涵盖了各种传感器的应用、模式识别和情感理解等高级认知能力,而运动与控制技术
- 计算机视觉主要知识点
superdont
计算机视觉人工智能
计算机视觉是指利用计算机和算法来解析和理解图片和视频中的内容。这是一个跨学科领域,融合了计算机科学、图像处理、机器学习和模式识别等多方面的技术。以下是一些计算机视觉入门的基本知识点:图像基础:像素:图片的最基本组成单元,包含了颜色信息。色彩空间:如RGB(红、绿、蓝)、HSV(色调、饱和度、明度)等,不同色彩空间代表图像色彩的方式不同。图像类型:位图(Bitmap)与矢量图(Vector),位图由
- 探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战
繁依Fanyi
dnn人工智能神经网络深度学习机器学习gitwindows
开篇部分:人工智能、深度神经网络与内存计算的交汇在当今数字化时代,人工智能(AI)已经成为科技领域的一股强大力量,而深度神经网络(DNN)则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作方式的计算模型,通过层层堆叠的神经元网络来实现复杂的模式识别和数据处理任务。从图像识别、语音识别到自然语言处理,DNN已经在各个领域展现了惊人的能力。然而,随着DNN模型的不断演进和复杂化,对计算资源的需求
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 「论文搬运」王亦洲课题组 CVPR 2021 入选论文解读:时间序列疾病预测的因果隐马尔可夫模型
Sternstunden
论文计算机视觉人工智能深度学习cvpr
本文是对发表于计算机视觉和模式识别领域的顶级会议CVPR2021的论文“CausalHiddenMarkovModelforTimeSeriesDiseaseForecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于VAE的变分框架进行学习。通过对图
- 探秘深度学习的巅峰之作:ResNet101与其在图像识别领域的革命性应用
程序员Chino的日记
深度学习人工智能
引言深度学习和图像识别的世界已经被深度卷积神经网络的引入所革命化,而在这些网络中,ResNet101架构作为一个重要的里程碑脱颖而出。本文旨在详细探讨ResNet101架构、其设计、功能和应用。ResNet革命2015年在计算机视觉和模式识别会议(CVPR)上介绍的ResNet(残差网络)家族,标志着深度学习图像识别的一个转折点。这些网络引入了残差学习的概念,解决了深度神经网络中的梯度消失问题,使
- LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?
电力系统爱好者
lstm人工智能rnn
LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?时间序列分析是处理时间相关数据的一种方法,常用于预测、趋势分析和模式识别等应用。下面是一些常见的时间序列分析方法和相应的MATLAB代码示例:移动平均法:%计算简单移动平均data=[1,2,3,4,5,6];windowSize=3;movingAverage=movmean(data,windowSize);自回归模型(
- 机器学习简要概述
@Duang~
机器学习机器学习人工智能算法
一、基本概念及应用传统机器学习算法首先需要对数据进行特征提取,采用分类器(如决策树、人工神经网络、贝叶斯、集成学习、支持向量机等)进行分类。机器学习:特征提取+分类器分类特征提取难,制约发展。深度学习出现,一定程度解决了特征提取的难题,机器学习繁荣起来。机器学习+数据库=数据挖掘+工业应用=模式识别+图像处理=机器视觉+语音处理=语音识别+文本处理=自然语言处理二、数据集及模型数据集的划分:方法:
- 大脑的工作原理
珊珊_带你重返年轻
今天继续阅读《微习惯》第二章,大脑的工作原理。今天这一章有点烧脑。大脑分成两个部分-潜意识部分和意识部分。重复就是(潜意识)大脑使用的语言。建立习惯的目标是用重复来改变大脑。事实上改变习惯的两个关键点是重复和回报,如果有回报,大脑更愿意重复做一件事。我们的行为中有45%是自动完成的,无须思考的。大脑是由执行决策和进行自动行为模式识别的两部分组成的系统。前额皮层的管理功能相当活跃,反应灵敏,但同时也
- 计算机视觉比较有名的期刊和会议
anycedo
中文SCI级:《物理学报》《红外与毫米波学报》etc.(IF比较低,也不是特别专门针对计算机视觉)EI级:《自动化学报》《光学精密工程》《电子学报》《软件学报》《计算机研究与发展》《计算机学报》《计算机辅助设计与图形学学报》《系统工程与电子技术》、一些大学的学报,etc.(质量参差不齐)中文核心《中国图象图形学报》《模式识别与人工智能》《机器人》《图学学报》《电光与控制》etc.国际会议1.ICC
- 工信部颁发的《计算机视觉处理设计开发工程师》中级证书
人工智能技术与咨询
人工智能计算机视觉自然语言处理
计算机视觉(ComputerVision)是一门研究如何让计算机能够理解和分析数字图像或视频的学科。简单来说,计算机视觉的目标是让计算机能够像人类一样对视觉信息进行处理和理解。为实现这个目标,计算机视觉结合了图像处理、机器学习、模式识别、计算几何等多个领域的理论和技术。计算机视觉在许多领域和行业中具有广泛应用,如自动驾驶、医疗影像分析、无人机、智能监控、虚拟现实(VR)和增强现实(AR)等。随着深
- 【大厂AI课学习笔记】1.5 AI技术领域(2)语音识别
giszz
学习笔记人工智能人工智能学习笔记
今天来梳理语音识别相关的关键技术和发展脉络。语音识别:定义、关键技术、技术发展、应用场景与商业化成功一、语音识别的定义语音识别,也称为自动语音识别(ASR),是指将人类的语音转换为机器可读的文本或命令的技术。它是人机交互的重要组成部分,旨在让计算机能够理解并执行人类的语音指令。语音识别技术涉及到信号处理、模式识别、自然语言处理等多个领域的知识。二、关键技术信号处理和特征提取:语音信号是一种复杂的时
- 深度学习在智能交互中的应用:人与机器的和谐共生
wd90119
深度学习人工智能
深度学习与人类的智能交互是当前人工智能领域研究的热点之一。深度学习作为机器学习的一个重要分支,具有强大的特征学习和模式识别能力,可以模拟人脑的神经网络进行数据分析和预测。而人类的智能交互则是指人类与机器之间的信息交流和操作互动,包括语音识别、图像识别、自然语言处理等技术。深度学习与人类的智能交互相结合,可以实现更加自然、高效和智能的人机交互方式。例如,通过深度学习的语音识别技术,机器可以理解和识别
- 深度学习的进展
csdn_aspnet
深度学习人工智能
一、深度学习的基本原理和算法:深度学习是一种基于神经网络的机器学习方法,其基本原理是模仿人脑神经网络的结构和功能,通过多层次的神经网络模型来实现对数据的学习和模式识别。以下是深度学习的基本原理和算法:1、输入层:深度学习的输入层接收原始数据,这可以是图像、文本、音频等各种形式的数据。2、隐藏层:深度学习的核心是多层的隐藏层。每一层都由大量的神经元(节点)组成,每个神经元都与上一层的所有神经元相连,
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f