Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)

参考于:

https://www.cnblogs.com/apan008/p/11254688.html

https://www.cnblogs.com/guoyaohua/p/9265268.html

目录

  • 前言
  • 第一步:安装Anaconda
    • 1.下载和安装
    • 2.配置Anaconda环境变量
  • 第二步:安装CUDA Toolkit + cuDNN
    • 1.查看需要安装的CUDA+cuDNN版本
    • 2.下载CUDA + cuDNN
    • 3.安装 CUDA Toolkit 9.0 和 cuDnn 7.0
  • 第三步:安装TensorFlow-GPU
    • 1.创建conda环境
    • 2.激活环境
    • 3.安装tensorflow-gpu
  • 第四步:测试

前言

很久以前就在自己的电脑上把CPU版本的tensorflow配置好了,最近搞了一个笔记本,上面配置着GTX1650显卡,正好要使用tensorflow,最开始以为这个显卡带不动,只配置了cpu版本的腾搜人flow,后来手痒痒就顺带把GPU版本的tensorflow也配置了,配置的过程很幸运,找到了一个好的教程,没太多的坑,很顺利的就配置好了,也没有安装VS,需要的时候直接装了一个pycocotools。

Tensorflow有两个版本:GPU和CPU版本,CPU的很好安装;GPU 版本需要 CUDA 和 cuDNN 的支持,如果你是独显+集显,那么推荐你用GPU版本的,因为GPU对矩阵运算有很好的支持,会加速程序执行!并且CUDA是Nvidia下属的程序,所以你的GPU最好是Nvidia的,AMD的显卡没有CUDA加速!满足以上条件之后,你需要查看一下你的英伟达GPU是否支持CUDA,以下是Geforce支持Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第1张图片

 

你也可以点击查看你的GPU是否支持CUDA

满足以上条件之后,你就可以安装Tensorflow了!(即使上面没有记录你的显卡,一般只要性能够的话也是可以的,我的GTX1650没有在列,性能应该居于GTX1060之下。)

第一步:安装Anaconda

1.下载和安装

下载地址:https://www.anaconda.com/download/

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第2张图片

我系统是64位,所以下载 64-Bit Graphical Installer (631 MB),之后就是进行安装了。

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第3张图片

和安装其他软件没有什么区别,需要注意的是这一步,不要勾选**“Add Anaconda to my PATH enviroment variable”,我们后面会手动加入。

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第4张图片

接下来就是等待了,安装结束后需要测试是否能正常使用。

2.配置Anaconda环境变量

我们点击左下角搜索栏搜索“环境变量”

 

点击环境变量

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第5张图片

选择“Path”,点击“编辑”

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第6张图片

将以下三个路径加入,注意这里要换成你自己的安装路径,我的在E盘。

  • E:\Anaconda3
  • E:\Anaconda3\Scripts
  • E:\Anaconda3\Library\bin

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第7张图片

 

然后点击“确定”保存,在左下角打开Anaconda—Anaconda Prompt,输入“conda -V”,能正常显示版本号,证明已经配置好了。

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第8张图片

第二步:安装CUDA Toolkit + cuDNN

1.查看需要安装的CUDA+cuDNN版本

注意,tensorflow是在持续更新的,具体安装的CUDA和cuDNN版本需要去官网查看,要与最新版本的tensorflow匹配。

点击查看最新tensorflow支持的CUDA版本:https://www.tensorflow.org/install/install_windows#requirements_to_run_tensorflow_with_gpu_support

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第9张图片

官网对于tensorflow和CUDA以及cuDNN都有更新,并不是最新的才可以用,关键是匹配好对应的版本。

2.下载CUDA + cuDNN

在这个网址查找CUDA已发布版本:https://developer.nvidia.com/cuda-toolkit-archive

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第10张图片

进入下载界面

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第11张图片

下载好CUDA Toolkit 9.0 后,我们开始下载cuDnn 7.0,需要注意的是,下载cuDNN需要在nvidia上注册账号,使用邮箱注册就可以,免费的。登陆账号后才能下载。

(其实查询网上资料不注册也可以下载,直接右击,需要下载的链接,在迅雷中就可以了,大家可以尝试一下)

cuDNN历史版本在该网址下载:https://developer.nvidia.com/rdp/cudnn-archive

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第12张图片

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第13张图片

这样,我们就下载好了 CUDA Toolkit 9.0 和 cuDnn 7.0,下面我们开始安装。

3.安装 CUDA Toolkit 9.0 和 cuDnn 7.0

至关重要的一步:卸载显卡驱动

由于CUDA Toolkit需要在指定版本显卡驱动环境下才能正常使用的,所以如果我们已经安装了nvidia显卡驱动(很显然,大部分人都安装了),再安装CUDA Toolkit时,会因二者版本不兼容而导致CUDA无法正常使用,这也就是很多人安装失败的原因。而CUDA Toolkit安装包中自带与之匹配的显卡驱动,所以务必要删除电脑先前的显卡驱动。

安装

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第14张图片

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第15张图片

此处选择“自定义(高级)”

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第16张图片

勾选所有

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第17张图片

一路通过即可。

接下来,解压“cudnn-9.0-windows10-x64-v7.zip”,将一下三个文件夹,拷贝到CUDA安装的根目录下。

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第18张图片

这样CUDA Toolkit 9.0 和 cuDnn 7.0就已经安装了,下面要进行环境变量的配置。

配置环境变量

将下面四个路径加入到环境变量中,注意要换成自己的安装路径。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib\x64

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\libnvvp

到此,全部的安装步骤都已经完成,这回我们测试一下。

 

第二步:安装TensorFlow-GPU

打开tensorflow官网:https://www.tensorflow.org/install/install_windows#installing_with_anaconda

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第19张图片

跟着操作步骤走就可以了。

1.创建conda环境

通过调用下列命令,创建一个名为“tensorflow”的conda环境:

conda create -n tensorflow pip python=3.5

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第20张图片

等待相应包的安装,如果国内网络太慢的话,可以为conda设置清华源,这样速度能快一点,具体配置过程,网上查一下吧,此处不再讲述。如果看到这样的提示,就证明conda环境创建成功。

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第21张图片

2.激活环境

通过以下命令激活conda环境:

activate tensorflow

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第22张图片

这样就进入了刚创建的“tensorflow”环境。

3.安装tensorflow-gpu

安装GPU版本的tensorflow需要输入以下命令:

pip install --ignore-installed --upgrade tensorflow-gpu 

如果只需要安装CPU版本的tensorflow则输入以下命令:

pip install --ignore-installed --upgrade tensorflow

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第23张图片

这样就安装成功了。

注意:务必注意一点,在安装完tensroflow后,由于我们是新创建的conda环境,该环境中基本上是空的,有很多包和IDE并没有安装进来,例如“Ipython”,“spyder”此时如果我们在该环境下打开spyder/Ipyton/jupyter notebook等,会发现其实IDE使用的kernel并不是新建立的这个环境的kernel,而是“base”这个环境的,而“base”环境中我们并没有安装tensorflow,所以一定无法import。这也就是为什么有很多人在安装好tensorflow后仍然在IDE里无法正常使用的原因了。

 

第四步:测试

 

测试一下是否能import tensorflow,但是一定要进入到我们的tensorflow环境中,不要在base环境下,激活tensorflow环境

Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)_第24张图片

 

运行出b'Hello tensorflow'证明我们的tensorflow已经安装成功了。

你可能感兴趣的:(解决问题)