【论文整理】推荐算法论文、学习资料

推荐算法论文、学习资料

  • New! [Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)

    2018 KDD best paper, Airbnb基于embeddding构建的实时搜索推荐系统
  • New! [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)

    阿里提出的深度兴趣网络(Deep Interest Network)最新改进DIEN

其他相关资源

  • 张伟楠的RTB Papers列表
  • 基于Spark MLlib的CTR预估模型(LR, FM, RF, GBDT, NN, PNN)
  • 推荐系统相关论文和资源列表
  • Honglei Zhang的推荐系统论文列表

目录

Optimization Method

Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给出直观解释的文章

  • Google Vizier A Service for Black-Box Optimization
  • 在线最优化求解(Online Optimization)-冯扬
  • Hogwild A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
  • Parallelized Stochastic Gradient Descent
  • A Survey on Algorithms of the Regularized Convex Optimization Problem
  • Follow-the-Regularized-Leader and Mirror Descent- Equivalence Theorems and L1 Regularization
  • A Review of Bayesian Optimization
  • Taking the Human Out of the Loop- A Review of Bayesian Optimization
  • 非线性规划

Topic Model

话题模型相关文章,PLSA,LDA,进行广告Context特征提取,创意优化经常会用到Topic Model

  • 概率语言模型及其变形系列
  • Parameter estimation for text analysis
  • LDA数学八卦
  • Distributed Representations of Words and Phrases and their Compositionality
  • Dirichlet Distribution, Dirichlet Process and Dirichlet Process Mixture(PPT)
  • 理解共轭先验

Google Three Papers

Google三大篇,HDFS,MapReduce,BigTable,奠定大数据基础架构的三篇文章,任何从事大数据行业的工程师都应该了解

  • MapReduce Simplified Data Processing on Large Clusters
  • The Google File System
  • Bigtable A Distributed Storage System for Structured Data

Factorization Machines

FM因子分解机模型的相关paper,在计算广告领域非常实用的模型

  • FM PPT by CMU
  • Factorization Machines Rendle2010
  • libfm-1.42.manual
  • Scaling Factorization Machines to Relational Data
  • fastFM- A Library for Factorization Machines

Embedding

  • [Negative Sampling] Word2vec Explained Negative-Sampling Word-Embedding Method (2014)
  • [SDNE] Structural Deep Network Embedding (THU 2016)
  • [Item2Vec] Item2Vec-Neural Item Embedding for Collaborative Filtering (Microsoft 2016)
  • [Word2Vec] Distributed Representations of Words and Phrases and their Compositionality (Google 2013)
  • [Word2Vec] Word2vec Parameter Learning Explained (UMich 2016)
  • [Node2vec] Node2vec - Scalable Feature Learning for Networks (Stanford 2016)
  • [Graph Embedding] DeepWalk- Online Learning of Social Representations (SBU 2014)
  • [Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
  • [Alibaba Embedding] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (Alibaba 2018)
  • [Word2Vec] Efficient Estimation of Word Representations in Vector Space (Google 2013)
  • [LINE] LINE - Large-scale Information Network Embedding (MSRA 2015)

Budget Control

广告系统中Pacing,预算控制,以及怎么把预算控制与其他模块相结合的问题

  • Budget Pacing for Targeted Online Advertisements at LinkedIn
  • Predicting Traffic of Online Advertising in Real-time Bidding Systems from Perspective of Demand-Side Platforms
  • Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising
  • PID控制经典培训教程
  • PID控制原理与控制算法
  • Smart Pacing for Effective Online Ad Campaign Optimization

Tree Model

树模型和基于树模型的boosting模型,树模型的效果在大部分问题上非常好,在CTR,CVR预估及特征工程方面的应用非常广

  • Introduction to Boosted Trees
  • Classification and Regression Trees
  • Greedy Function Approximation A Gradient Boosting Machine
  • Classification and Regression Trees

Guaranteed Contracts Ads

事实上,现在很多大的媒体主仍是合约广告系统,合约广告系统的在线分配,Yield Optimization,以及定价问题都是非常重要且有挑战性的问题

  • A Dynamic Pricing Model for Unifying Programmatic Guarantee and Real-Time Bidding in Display Advertising
  • Pricing Guaranteed Contracts in Online Display Advertising
  • Risk-Aware Dynamic Reserve Prices of Programmatic Guarantee in Display Advertising
  • Pricing Guidance in Ad Sale Negotiations The PrintAds Example
  • Risk-Aware Revenue Maximization in Display Advertising

Classic CTR Prediction

  • [LR] Predicting Clicks - Estimating the Click-Through Rate for New Ads (Microsoft 2007)
  • [FFM] Field-aware Factorization Machines for CTR Prediction (Criteo 2016)
  • [GBDT+LR] Practical Lessons from Predicting Clicks on Ads at Facebook (Facebook 2014)
  • [PS-PLM] Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction (Alibaba 2017)
  • [FTRL] Ad Click Prediction a View from the Trenches (Google 2013)
  • [FM] Fast Context-aware Recommendations with Factorization Machines (UKON 2011)

Bidding Strategy

计算广告中广告定价,RTB过程中广告出价策略的相关问题

  • Research Frontier of Real-Time Bidding based Display Advertising
  • Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising
  • Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising
  • Real-Time Bidding by Reinforcement Learning in Display Advertising
  • Combining Powers of Two Predictors in Optimizing Real-Time Bidding Strategy under Constrained Budget
  • Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising
  • Optimized Cost per Click in Taobao Display Advertising
  • Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation
  • Deep Reinforcement Learning for Sponsored Search Real-time Bidding

Computational Advertising Architect

广告系统的架构问题

  • [TensorFlow Whitepaper]TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems
  • 大数据下的广告排序技术及实践
  • 美团机器学习 吃喝玩乐中的算法问题
  • [Parameter Server]Scaling Distributed Machine Learning with the Parameter Server
  • Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting
  • A Comparison of Distributed Machine Learning Platforms
  • Efficient Query Evaluation using a Two-Level Retrieval Process
  • [TensorFlow Whitepaper]TensorFlow- A System for Large-Scale Machine Learning
  • [Parameter Server]Parameter Server for Distributed Machine Learning
  • Overlapping Experiment Infrastructure More, Better, Faster Experimentation

Machine Learning Tutorial

机器学习方面一些非常实用的学习资料

  • 各种回归的概念学习
  • 机器学习总图
  • Efficient Estimation of Word Representations in Vector Space
  • Rules of Machine Learning- Best Practices for ML Engineering
  • An introduction to ROC analysis
  • Deep Learning Tutorial
  • 广义线性模型
  • 贝叶斯统计学(PPT)
  • 关联规则基本算法及其应用

Transfer Learning

迁移学习相关文章,计算广告中经常遇到新广告冷启动的问题,利用迁移学习能较好解决该问题

  • [Multi-Task]An Overview of Multi-Task Learning in Deep Neural Networks
  • Scalable Hands-Free Transfer Learning for Online Advertising
  • A Survey on Transfer Learning

Deep Learning CTR Prediction

  • [DCN] Deep & Cross Network for Ad Click Predictions (Stanford 2017)
  • [Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features (Microsoft 2016)
  • [PNN] Product-based Neural Networks for User Response Prediction (SJTU 2016)
  • [DIN] Deep Interest Network for Click-Through Rate Prediction (Alibaba 2018)
  • [ESMM] Entire Space Multi-Task Model - An Effective Approach for Estimating Post-Click Conversion Rate (Alibaba 2018)
  • [Wide & Deep] Wide & Deep Learning for Recommender Systems (Google 2016)
  • [xDeepFM] xDeepFM - Combining Explicit and Implicit Feature Interactions for Recommender Systems (USTC 2018)
  • [Image CTR] Image Matters - Visually modeling user behaviors using Advanced Model Server (Alibaba 2018)
  • [AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks (ZJU 2017)
  • [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
  • [DSSM] Learning Deep Structured Semantic Models for Web Search using Clickthrough Data (UIUC 2013)
  • [FNN] Deep Learning over Multi-field Categorical Data (UCL 2016)
  • [DeepFM] A Factorization-Machine based Neural Network for CTR Prediction (HIT-Huawei 2017)
  • [NFM] Neural Factorization Machines for Sparse Predictive Analytics (NUS 2017)

Exploration and Exploitation

探索和利用,计算广告中非常经典,也是容易被大家忽视的问题,其实所有的广告系统都面临如何解决新广告主冷启动,以及在效果不好的情况下如何探索新的优质流量的问题,希望该目录下的几篇文章能够帮助到你

  • An Empirical Evaluation of Thompson Sampling
  • Dynamic Online Pricing with Incomplete Information Using Multi-Armed Bandit Experiments
  • Finite-time Analysis of the Multiarmed Bandit Problem
  • A Fast and Simple Algorithm for Contextual Bandits
  • Customer Acquisition via Display Advertising Using MultiArmed Bandit Experiments
  • Mastering the game of Go with deep neural networks and tree search
  • Exploring compact reinforcement-learning representations with linear regression
  • Incentivizting Exploration in Reinforcement Learning with Deep Predictive Models
  • Bandit Algorithms Continued- UCB1
  • A Contextual-Bandit Approach to Personalized News Article Recommendation(LinUCB)
  • Exploitation and Exploration in a Performance based Contextual Advertising System
  • Bandit based Monte-Carlo Planning
  • Random Forest for the Contextual Bandit Problem
  • Unifying Count-Based Exploration and Intrinsic Motivation
  • Analysis of Thompson Sampling for the Multi-armed Bandit Problem
  • Thompson Sampling PPT
  • Hierarchical Deep Reinforcement Learning- Integrating Temporal Abstraction and Intrinsic Motivation
  • Exploration and Exploitation Problem by Wang Zhe
  • Exploration exploitation in Go UCT for Monte-Carlo Go
  • 对抗搜索、多臂老虎机问题、UCB算法
  • Using Confidence Bounds for Exploitation-Exploration Trade-offs

Allocation

广告流量的分配问题

  • An Efficient Algorithm for Allocation of Guaranteed Display Advertising
  • Ad Serving Using a Compact Allocation Plan

你可能感兴趣的:(深度学习,神经网络,机器学习)