- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- 《Spark大数据分析与内存计算》——第三章
阿万古
课程作业spark数据分析大数据
第三章作业及答案快捷查找:Ctrl+F在搜索框中输入题目一.单选题(共17题)1.(单选题)并不是所有企业都能自己产生数据,从而用于决策辅助,而更多的互联网企业如电商等大部分是要靠什么来抓取互联网数据进行分析A.HadoopB.pythonC.SparkD.网路爬虫正确答案:D:网路爬虫;2.(单选题)什么负责即席查询的应用A.MLlibB.SparkStreamingC.GraphXD.Spar
- PySpark之金融数据分析(Spark RDD、SQL练习题)
唯余木叶下弦声
大数据大数据sparkpysparkpython数据分析sql
目录一、数据来源二、PySparkRDD编程1、查询特定日期的资金流入和流出情况2、活跃用户分析三、PySparkSQL编程1、按城市统计2014年3月1日的平均余额2、统计每个城市总流量前3高的用户四、总结一、数据来源本文使用的数据来源于天池大赛数据集,由蚂蚁金服提供,包含用户基本信息、申购赎回记录、收益率、银行间拆借利率等多个维度,本文通过PySpark实现对该数据集的简单分析。数据来源:天池
- 提取图片颜色信息转数据信息
~夕上林~
图像处理matlab
提取图片颜色信息转数据信息背景:给定原始图片如下,数据范围为0~2π\piπ,如何通过给定图片,提取出来对应的数据信息。目录提取图片颜色信息转数据信息分析颜色模型图像预处理图像修复图片重建和裁剪提取数据分析原始图片存在两个数据图Transmittedwave和Reflectedwave,接下来将其简称为c图和d图。两数据图的颜色范围和数据范围均一致,之后以c图进行分析:项目Value长lll2.2
- 如何在 Ubuntu 20.04 或 22.04 上安装 Python 3
百川Cs
计算机基础ubuntupythonlinuxpipconda
以下是关于如何在Ubuntu20.04或22.04上安装Python3的详细步骤。Python是一种广泛使用的编程语言,适用于自动化、数据分析、机器学习等领域。Ubuntu系统通常预装了Python3,但如果需要安装或升级到最新版本,可以按照以下方法操作。检查系统是否已安装Python3打开终端(快捷键:Ctrl+Alt+T)。输入以下命令检查是否已安装Python3:python3--versi
- 电影智能推荐系统
风又起而叶落地
pandas
电影智能推荐系统背景介绍人们经常会在视频平台上观看影片,有时目标明确,想要观看某部电影,但有时仅仅是随机搜寻。如果视频平台可以利用基于物品的智能推荐系统,有效地从用户对其观看过的电影的评分中挖掘数据,便可以根据用户偏好的电影个性化地推荐更多类似的电影,优化用户体验,提高用户粘性,创造额外收入。分析步骤读取数据数据分析合并电影数据和评分数据计算每部电影的评分均值计算每部电影的“评分次数”创建数据透视
- 探秘FreeMovie:一个开源的电影推荐系统
孟振优Harvester
探秘FreeMovie:一个开源的电影推荐系统去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的开源电影推荐系统,由pojiezhiyuanjun开发并维护。该项目的目标是为用户提供个性化的电影推荐服务,通过机器学习算法理解用户的观影偏好,并据此进行智能推荐。技术分析FreeMovie的核心架构包括以下关键组件:数据处理-项目采用Hadoop进行大数据预处
- Python Pandas数据清洗与处理
大数据张老师
Python程序设计pythonpandas开发语言
PythonPandas数据清洗与处理在进行数据分析时,原始数据往往包含了许多不完整、不准确或者冗余的信息。数据清洗与处理的任务就是将这些杂乱无章的数据清理干净,确保数据的准确性和一致性,从而为后续的分析工作打下坚实的基础。Pandas提供了强大的工具来帮助我们清洗和处理数据,尤其是在处理Series和DataFrame时,它能够高效地进行数据的筛选、填充、删除、替换等操作。本节将通过一些常见的数
- 基于大数据的电影数据分析可视化系统设计与应用
AI架构设计之禅
大数据AI人工智能AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于大数据的电影数据分析可视化系统设计与应用作者:禅与计算机程序设计艺术1.背景介绍1.1大数据时代的电影行业随着互联网技术和数字化的发展,电影行业已经进入大数据时代。每天都有海量的电影相关数据在各个平台上生成,包括票房数据、评分数据、影评数据等。这些数据蕴含着巨大的价值,如果能够有效地分析和利用,将为电影行业的发展提供重要的决策支持。1.2电影数据分析与可视化的意义1.2.1洞察电影市场趋势通过
- 分享wind量化交易平台接口编程代码
「已注销」
python开发语言
相信做股票投资的的人对于wind应该很熟悉,它是一个比较高端的金融数据服务商,有很多人做数据分析之前,一定都需要到wind上看看相关资料,但是wind上面的信息非常多,如果可以通过量化交易接口进行筛选,操作起来就会方面很多了,今日我们就来分享一组wind量化交易平台接口的编程代码。importpandasaspdfromWindPyimport*fromdatetimeimport*importt
- 【实践】Python实现气象数据分析与可视化
大数据张老师
Python程序设计信息可视化python数据分析可视化
一、项目需求在本节中,我们将明确“气象数据分析与可视化”项目的需求,定义项目的功能和目标,为后续的实现奠定基础。通过本项目,读者将学习如何使用Python的各种数据处理和可视化工具来分析和展示气象数据,从而掌握数据处理与可视化的核心技能。1.项目目标“气象数据分析与可视化”项目的目标是通过对历史气象数据的处理和分析,生成直观的图表和统计结果,帮助用户理解气象趋势并预测未来变化。项目的主要功能如下:
- 证券量化交易选择合适的编程语言
jcsx
量化numpypandaspyqtservletjavascript
在证券量化交易中,选择合适的编程语言至关重要,因为它直接影响到开发效率、运行速度和策略的灵活性。常用的编程语言有几个,它们各自有不同的优势和应用场景。以下是一些在量化交易中常用的编程语言:PythonPython是目前量化交易中最流行的编程语言之一,特别是在金融数据分析和模型开发中,广泛被使用。Python的流行主要有以下原因:数据处理能力:Python有非常强大的数据处理库,如pandas(数据
- Python数据分析案例教程
kkchenjj
数据挖掘python数据分析信息可视化
Python数据分析案例教程Python在数据分析中的应用Python因其简洁的语法、强大的库支持以及广泛的社区资源,已成为数据分析领域的首选语言。它能够处理从数据清洗、数据可视化到机器学习模型构建的整个数据科学流程。本节将深入探讨Python在数据分析中的具体应用,包括但不限于数据清洗、数据探索、统计分析和预测建模。数据清洗数据清洗是数据分析的首要步骤,涉及处理缺失值、异常值、重复数据以及数据类
- 金融数据有哪些,有用的股票API接口数据
nance99
金融pythongit
一、金融数据有哪些,有用的股票API接口行情数据金融大数据是为金融机构、个人投资者以及金融应用开发者提供专业的数据和行情报价API服务,满足不同用户在投资过程中丰富多样的行情数据分析和投资研究,以API接口形式为用户提供行情数据API服务,提供的数据包括市场行情、财报、宏观等,还有基于文本分析的股票关联数据。对金融机构或者投资者而言,金融数据是企业财富。实时数据对企业成功至关重要,股票行情数据种类
- 网络安全态势感知:企业数字化转型的 “安全密钥”
知白守黑V
安全运营网络安全态势感知网络
在数字经济飞速发展的当下,网络安全已经成为企业平稳运营的关键所在。从大型企业的数据泄露事故,到中小企业遭遇的各类网络攻击,网络安全威胁无处不在。而网络安全态势感知产品,作为应对复杂网络威胁的关键技术,正逐渐成为企业守护数字资产的“智慧大脑”。一、态势感知:全景掌控,精准防御你可以把网络安全态势感知想象成企业网络的“超级侦察兵”。它借助大数据分析、机器学习这些先进技术,就像是拥有了超级强大的“洞察力
- 基于Python的豆瓣电影爬虫数据分析可视化设计与实现
计算机软件程序设计
Python爬虫Python程序设计数据分析python爬虫
【1】系统介绍1.研究背景随着互联网的快速发展,电影产业已经成为全球文化产业的重要组成部分。观众对电影的需求和兴趣日益增长,而在线电影平台如豆瓣电影(DoubanMovie)成为了用户获取电影信息、发表评论和评分的主要渠道之一。豆瓣电影不仅提供了丰富的电影资料,还拥有庞大的用户群体,这些用户生成的内容(UGC)为电影市场分析提供了宝贵的数据资源。然而,尽管豆瓣电影平台提供了大量的公开数据,但这些数
- 周报管理系统
大霸王龙
行业+领域+业务场景=定制pythonmicrosoftascii文本处理
代码仓库产品名称:智汇周报管理系统主要功能:自动化报告生成:智汇周报管理系统能够自动收集项目进展、任务完成情况、团队成员工作日志等关键数据,基于预设模板或用户自定义模板,一键生成周报。支持多格式导出(如Word、PDF、Excel),满足不同场景下的报告需求。智能数据分析与可视化:系统内置强大的数据分析引擎,能够自动对收集到的数据进行统计分析,如任务完成率、进度延误情况、成员工作负荷等,并通过图表
- 怎么利用商品详情 API 接口实现数据获取与应用?
前端后端运维数据挖掘api
在电商蓬勃发展的时代,数据成为了驱动业务增长的关键要素。对于电商从业者、开发者以及数据分析爱好者而言,获取商品详情数据并加以有效应用,是实现精准营销、优化用户体验、提升运营效率的重要途径。商品详情API接口就像是一把钥匙,为我们打开了获取海量商品数据的大门。本文将深入探讨如何利用商品详情API接口实现数据的获取与应用,并通过丰富的代码示例,帮助大家更好地理解和实践。一、理解商品详情API接口API
- 【2024校招总结帖】数据分析、面试经验、心得体会分享
huaxinjiayou
java
首航新能源,一进来就开始大批裁员工作节奏比较快,公司对员工的加班要求也比较严格,而且没有加班费,缺乏福利待遇。另外,公司裁员频繁,而阿里国际一面面经吹爆阿里国际面试官,比某些自以为是的面试官好太多了,面试还不开摄像头。写题的时候,我问他要开摄像头吗鼠人传(第五十二集,2024/4/30)刷题:补昨天的C、MinimizingtheSum,定义dp[i][j]为长度i,使用最多j次可2024西山居S
- 【Python】红旗超市线下缴电费用户数据分析及可视化(pandas+pyecharts)
风度78
百度人工智能python机器学习数据分析
场景分析:一部分用户习惯在红旗超市线下进行缴电费,电力公司希望了解哪些用户喜欢到线下缴费,具体分布在哪里,才能有针对性地宣传掌上电力app引导用户体验更高效的线上缴费方式,提升用户满意度。需求分析:首先要拿到红旗超市线下缴费清单数据,对所有数据进行隐私化处理,数据预览如图所示:可以看出台区名称为本项目的核心字段,通过台区匹配到经纬度信息,然后利用经纬度信息进行线下缴费热力图展示。同时可以提供分析报
- ECharts:数据可视化的魔法师,偶尔也会“皮”一下
Python私教
Web使用Vue3进行前端开发Vue信息可视化echarts前端
在数据爆炸的时代,如何从海量数据中提取有价值的信息,并将其清晰易懂地呈现出来,成为了各行各业面临的共同挑战。数据可视化作为一种有效的信息传递手段,应运而生,并逐渐成为数据分析领域不可或缺的一部分。而在众多数据可视化工具中,ECharts凭借其强大的功能、灵活的配置和丰富的图表类型,脱颖而出,成为了众多开发者的首选利器。一、ECharts:数据可视化的利器ECharts是一个由百度开源的可视化图表库
- 电商商业平台技术架构系列教程之:电商平台系统架构设计
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍1.1电商背景简介电商俗称网上购物,是一种通过网络直接进行商品交易的一种服务方式。在电商平台的运作中,消费者可以选择浏览、搜索和购买自己需要的产品或服务。通过平台发布的产品及其信息,用户可以方便地找到相关的产品和服务,从而提高效率和效益。而电商平台则是提供交易平台、管理后台、销售数据分析等功能。1.2电商系统架构概述电商平台通常由后端服务(API服务)、数据
- python处理excel的具体操作
若木胡
toolspython
安装相关库openpyxl库:用于读取和写入Excel文件(.xlsx/.xlsm)。可以使用pipinstallopenpyxl命令进行安装。pandas库:提供了高效的数据结构和数据分析工具,它对openpyxl进行了封装,使操作Excel文件更加方便。安装命令是pipinstallpandas。使用openpyxl读取Excel文件打开工作簿:首先要导入openpyxl库,然后使用load_
- wps2019数据分析加载项_怎样用Excel做数据分析(电商案例)
weixin_39907939
wps2019数据分析加载项
一、数据分析步骤明确问题:知道你要研究什么问题,从而有目地的查找数据理解数据:寻找与问题相关的数据;从数据中你能得出的信息;理解字段信息数据清洗(数据预处理):选择子集;列名重命名;删除重复值;缺失值处理;一致化处理;数据排序;异常值处理数据分析或构建模型:数据透视表;在Excel安装数据分析功能(安装步骤:文件~选项~加载项~Excel加载项转到~分析工具库,注意!这是MicrosoftExce
- 动态规划详解-最小路径和问题【python】
数据分析螺丝钉
LeetCode刷题与模拟面试动态规划算法leetcodepython数据结构
作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。会一些的技术:数据分析、算法、SQL、大数据相关、python欢迎加入社区:码上找工作作者专栏每日更新:LeetCode解锁1000题:打怪升级之旅python数据分析可视化:企业实战案例备注说明:方便大家阅读,统一使用python,带必要注释,公众号数据分析螺丝钉一起打怪升级1.问题介绍和应用场景最小路径和问题是一个常见的动态规划问
- [Python从零到壹] 七十七.图像识别及经典案例篇之目标检测入门普及和ImageAI对象检测详解
Eastmount
Python从零到壹python目标检测ImageAI图像是被基础系列
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智
- spss因子分析过程中,旋转载荷平方和累积有点低咋办怎么调整
xiamu_CDA
python
SPSS因子分析过程中,旋转载荷平方和累积有点低咋办?怎么调整?在数据分析领域,因子分析是一项重要的统计技术,尤其在心理学、社会学、市场营销等领域中应用广泛。它通过将多个变量简化为少数几个潜在因子,帮助研究者理解变量之间的内在结构。然而,在实际操作过程中,我们常常会遇到一些棘手的问题,比如旋转载荷平方和累积值偏低。这不仅会影响模型的解释力,还可能导致研究结果的可靠性大打折扣。那么,当我们在使用SP
- 构建自动化网页内容监控系统:使用Python
爱你不会累
本文还有配套的精品资源,点击获取简介:网页监控更新工具是一个由Python开发的软件,用于检测和记录网页内容的变化。该工具利用Python在Web抓取和数据分析方面的优势,包括利用requests,BeautifulSoup,lxml,和diff-match-patch等库来获取网页内容、解析HTML文档及计算文本差异。工具支持在Windows7及Python2.7.3环境下运行,并允许用户设定监
- python鸢尾花数据集knn_【python+机器学习1】python 实现 KNN
weixin_39629269
python鸢尾花数据集knn
欢迎关注哈希大数据微信公众号【哈希大数据】1KNN算法基本介绍K-NearestNeighbor(k最邻近分类算法),简称KNN,是最简单的一种有监督的机器学习算法。也是一种懒惰学习算法,即开始训练仅仅是保存所有样本集的信息,直到测试样本到达才开始进行分类决策。KNN算法的核心思想:要想确定测试样本属于哪一类,就先寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后判断这K个样本中大部分所
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$