- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- ORB-SLAM2源码学习:System.cc:System::System SLAM系统的构造函数
PaLu-LvL
计算机视觉#ORB-SLAM2c++学习计算机视觉算法opencv
前言ORB-SLAM2源码学习:rgbd_tum.cc源文件-CSDN博客之前我们在具体的实例的代码中初始化了一个SLAM的系统,现在让我们来看看这个SLAM的构造函数具体进行了什么操作。总的来说:该函数主要干了以下事情:1.初始化一些参数(列表初始化)2.加载并检查配置文件和词汇表3.创建一些对象如关键帧数据库、地图、绘制器等。4.启动并初始化多个线程:跟踪线程、本地建图线程、回环检测线程、可视
- ORB-SLAM2源码学习:Tracking.cc:GrabImageStereo、GrabImageRGBD、GrabImageMonocular处理图像
PaLu-LvL
计算机视觉#ORB-SLAM2#局部建图线程计算机视觉人工智能c++ubuntu学习
前言该部分函数在Tracking.cc源文件中定义,用于处理图像。1.函数作用:1.GrabImageStereo函数的主要作用是处理输入的双目图像(左视图和右视图),进行必要的预处理(颜色转换),创建表示当前帧的对象,并执行跟踪操作,最后返回当前帧在世界坐标系下的变换矩阵。cv::MatTracking::GrabImageStereo(constcv::Mat&imRectLeft,const
- ORB-SLAM2源码逐行解析系列(二):追踪线程
LDST_CSDN
计算机视觉人工智能自动驾驶
1.Tracking类(1)Tracking类的定义///Examples/Monocular/include/Tracking.hclassTracking{public:/***@brief构造函数**@param[in]pSys系统实例*@param[in]pVoc字典指针*@param[in]pFrameDrawer帧绘制器*@param[in]pMapDrawer地图绘制器*@param
- ORB-SLAM2源码学习:Initializer.cc⑨: Initializer::FindHomography找到最好的单应矩阵H
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉opencvubuntu人工智能矩阵学习
前言该函数功能的实现依赖于之前学习的三个函数特征点的坐标归一化、计算单应矩阵H以及它的评分函数。ORB-SLAM2源码学习:Initializer.cc②:Initializer::Normalize坐标归一化-CSDN博客ORB-SLAM2源码学习:Initializer.cc③:Initializer::ComputeH21计算单应矩阵-CSDN博客ORB-SLAM2源码学习:Initiali
- ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉人工智能ubuntu学习矩阵线性代数
前言这部分函数的实现依赖于之前学习的的检查三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客这里通过基础矩阵F来恢复位姿和三维点实际上是借助本质矩阵来进行的,相对于用单应矩阵H恢复位姿和三维点来说,它的解的结构较为简单其解的讨论形式也是比较简单的。1.函数声明boolInitializer::Recon
- ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉ubuntu人工智能矩阵学习
前言这个函数的实现依赖于之前学习的检验三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客位姿可能有多组解,到底哪个才是真正的解呢?方法是实践出真知。根据相应的论文我们分两种情况分别恢复出不同的解,最后得到一个最好的。每种可能的解都需要重复计算一次,最终根据如下条件选择最佳的解:1.最优解成功三角化点数目
- 【ORB-SLAM2:九、BA优化】
KeyPan
ORB-SLAM2人工智能计算机视觉机器学习深度学习算法
BA(BundleAdjustment)是SLAM系统中优化位姿和地图点位置的重要技术。通过最小化图结构中的重投影误差,BA在提高地图精度和轨迹优化方面发挥了核心作用。本章将围绕BA优化展开,从图优化工具简介到优化函数分类,再到具体的局部BA和Sim3优化边的解析进行详细阐述。9.1图优化和g2o简介9.1.1图优化的基本概念图优化图优化将SLAM问题建模为一个图结构:节点(Vertices):代
- 【ORB-SLAM2:三、 地图初始化】
KeyPan
ORB-SLAM2数码相机计算机视觉人工智能机器学习深度学习算法
地图初始化是视觉SLAM系统的关键步骤之一,它是整个系统运行的起点。初始化的主要任务是从输入图像数据中构建一个初始地图,为后续的相机位姿估计和场景重建提供基础。无论是单目、双目还是RGB-D相机,地图初始化的结果直接决定了系统的鲁棒性和精度。3.1为什么需要地图初始化3.1.1地图初始化的重要性定义初始参考坐标系地图初始化为SLAM系统提供了一个全局参考坐标系,使后续的位姿估计和地图扩展能够在一致
- ORB-SLAM2:四、 地图点、关键帧、图结构】
KeyPan
ORB-SLAM2计算机视觉人工智能机器学习深度学习算法
地图点、关键帧和图结构是ORB-SLAM系统的核心组成部分,它们共同构建了SLAM系统的空间表示与数据组织方式。本章将详细讨论这些模块及其在系统中的作用和实现方式。4.1地图点4.1.1什么是地图点地图点(MapPoint)是SLAM系统中用来表示环境中三维特征点的抽象概念。这些点是通过相机观测和三角测量得到的,是地图构建的基础。三维位置每个地图点存储其在世界坐标系中的三维坐标P(X,Y,Z)P(
- 基于ORB-SLAM2与YOLOv8剔除动态特征点
笨小古
SLAM学习SLAMYOLOYOLOv8
基于ORB-SLAM2与YOLOv8剔除动态特征点以下方法以https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_xyz数据集进行实验测试APE首先在不剔除动态特征点的情况下进行测试:方法1:segment坐标点集合逐一排查剔除利用YOLOv8的segment获取动态对象(这里指人person)所在
- 科普类(遥操作)——快速索引
JANGHIGH
快速索引科普类无人驾驶科技
快速索引科普类——遥操作(一)科普类——遥操作中的延时问题(二)科普类——遥操作中优化通信技术措施(三)科普类——大疆无人机(DJI)在解决图像传输延时问题策略(四)科普类——遥操作领域中比较活跃的部分中国企业(五)科普类——百度Apollo无人驾驶汽车使用的传感器配置(六)科普类——无压缩图像传输带宽的计算(七)科普类——ORB-SLAM2与ORB-SLAM3的整体架构以及异同点(八)科普类——
- 【ORB-SLAM2源码梳理1】以单目mono_tum.cc为例,构建SLAM系统(含mono_tum.cc、System.cc关键代码解析)
Jay_z在造梦
ORB-SLAM2c++slamorb
文章目录前言一、进入mono_tum.cc1.导入TUM数据集图片:LoadImages()2.构建SLAM系统:System3.系统构建结束,开启跟踪线程1)一帧帧地读取对应路径下的rgb图像:2)将图像帧传入Tracking线程,开始一系列操作(关键):二、代码导图前言因为对于视觉SLAM而言,单目涉及初始化等步骤,相对于双目和RGBD较为复杂,故从单目学起。学习记录。一、进入mono_tum
- mono_tum.cc系统构造函数——ORBSLAM2源码讲解(三)
running snail szj
slam音视频硬件架构slamorb-slam2
文章目录前言一、mono_tum.cc*的源码及注释二、System函数1.system.h2.system.cc三、Tracking1.Tracking.cc2.ORBextractor.cc前言欢迎浏览我的SLAM专栏,一起加油淦穿SLAM!一、mono_tum.cc*的源码及注释本博客是以单目的形式来学习代码。以下为ORB-SLAM2源码的Examples文件夹下的Monocular的mon
- ORB-SLAM2代码学习1 rgdb_tum.cc
Dziwu
SLAM学习计算机视觉人工智能
论文翻译参考1参考2rgdb_tum.cc的框架代码大致思路LoadImages()加载图像——判断rgb图是否存在——判断rgb图与depth图数量是否对应相同。ORB_SLAM2::SystemSLAM()初始化,创建SLAM系统,并初始化各个线程。遍历每一对RGB图和depth图【读取RGB图和depth图,读取时间戳(vTimestamps存储了时间戳,实际上就是存储了数据文件的每一幅图像
- ORB-SLAM2论文总结
Mr.Qin_
SLAMslamorbORB-SLAM2
ORB-SLAM2学文学习总结1系统概述2加速特征点匹配策略2.1词袋模型加速匹配2.2恒速运动模型加速匹配3系统原理详解3.1初始化3.2跟踪线程3.3局部建图线程3.4回环检测线程4一些总结4.1单目、双目、RGBD的差别4.2系统所用到的优化1系统概述 ORB-SLAM2支持单目、双目、RGB-D相机的输入,整个系统包含三个线程跟踪线程、局部建图线程、回环检测线程(当检测到回环时,回环融合
- SLAM实践 -- 利用ROS实时运行ORB-SLAM2
笨小古
SLAM学习SLAM
利用ROS实时运行ORB-SLAM21.启动ROS:roscore2.打开摄像头(笔者使用的相机是奥比中光的AstraS深度相机):roslaunchastra_cameraastra.launch在/ORB_SLAM2/Examples/ROS/ORB_SLAM2/src目录下找到ros_mono.cc,进行以下修改:这里"/camera/color/image_raw"是笔者摄像头获取图像后发
- 【转】ORB-SLAM2调用OAK-D双目摄像头进行点云建图
OAK中国_官方
OAK深度相机使用教程OAK相机depthaiorb-slam
编辑:OAK中国首发:A.hyh@CSDN喜欢的话,请多多⭐️✍内容来自用户的分享,如有疑问请与原作者交流!▌前言Hello,大家好,这里是OAK中国,我是助手君。近期在CSDN刷到一篇教程,感觉不错的呦,分享给大家!更多资源和教程,可在我的主页搜索哦。▌一、运行stereo_node.launch实例查看双目摄像头发布的话题,并修改orb-slam2摄像头节点。gagaga@ubuntu:~$c
- 编译ORB-SLAM2出现错误
TKFee
c++计算机视觉ubuntu
报错:/usr/bin/ld:cannotfind-lEigen3::Eigen#1038解决方法:1.删除cmake_modules文件夹2.再次编译,成功。参考链接:raulmur/ORB_SLAM2:Real-TimeSLAMforMonocular,StereoandRGB-DCameras,withLoopDetectionandRelocalizationCapabilities(gi
- ./build_ros.sh 解决报错 rospack found package “ORB_SLAM3“ at ““, but the current directory is....
全日制一起混
ORB-SLAM3无人机PX4SLAMc++计算机视觉ubuntu
同样针对ORB-SLAM2也有效:编译ORB的ROS版本经常出现这个问题:CMakeErrorat/opt/ros/melodic/share/ros/core/rosbuild/private.cmake:99(message):[rosbuild]rospackfoundpackage"ORB_SLAM3"at"",butthecurrentdirectoryis"/home/tzy/ORB3
- 单目特征点对三角化
兔子不吃草~
ORB-SLAM2c++计算机视觉
ORB-SLAM2之特征点对三角化文章目录ORB-SLAM2之特征点对三角化5特征点对三角化5.1数学推导5.2代码分析5.2.1三角化5.2.2何处调用5.3三角化生成的地图点检验5.3.1理论分析5.3.2代码分析5特征点对三角化5.1数学推导 记P1,P2分别是第1、2帧对应的投影矩阵,它们将同一个空间点X(X,Y,Z)X(X,Y,Z)X(X,Y,Z)投影到图像上,对应特征匹配对x1、x2
- SLAM ORB-SLAM2(14)特征点坐标归一化
氢键H-H
OpenSLAM#ORB-SLAM2SLAMORB-SLAM2
SLAMORB-SLAM2(14)特征点坐标归一化1.前言2.Normalize3.求均值4.求平均差5.尺度归一化6.归一化矩阵1.前言在《SLAMORB-SLAM2(13)查找单应矩阵》中了解到计算单应矩阵主要过程:特征点坐标归一化Normalize选择归一化之后的特征点八点法计算单应矩阵ComputeH21评分并评优CheckHomography现在先来看看坐标归一化2.Normalize这
- ORB-SLAM2源码笔记(3)—— 地图点MapPoint
好好仔仔
自动驾驶人工智能机器学习c++计算机视觉
ORB-SLAM2代码详解03:地图点MapPoint_ncepu_Chen的博客-CSDN博客_orbslam地图点地图点是三维点,有唯一的id,不同帧的特征点可能对应同一个三维点。地图点的世界坐标保存在mWorldPos中,它与关键帧的观测关系则保存在mObservations中。其中mObservations是一个key-value结构,key为观测到的某个关键帧,value为当前地图点在该
- ORB-SLAM2学习(原理):MapPoint.cc
小白tb
slamC++学习学习c++自动驾驶人工智能
ORB-SLAM2学习(原理):MapPoint.cc详细中文源码解读:链接:https://pan.baidu.com/s/1LWfowy5wbUdXamEGE1STcA提取码:t796PS:该代码从“计算机视觉life”客服处免费获得,感觉确实挺详细的,就标明一下出处,侵权则删。文章目录ORB-SLAM2学习(原理):MapPoint.ccMapPoint::UpdateNormalAndDe
- 详谈ORB-SLAM2的地图点MapPoint
极客范儿
━═━═━◥MR◤━═━═━1024程序员节
ORB-SLAM2中维护的是局部建图,在项目里所谓的地图就是两个数组:特征点数组和关键帧数组。所有关键帧和特征点的结合就是地图信息,所以在ORB-SLAM2中最重要的两个部分就是地图点和关键帧。这两个部分在设计上非常像,代码重复率很高。文章目录一、特征点和地图点的区别1、特征点是`2D`的,相机图像上的点(图像金字塔)2、地图点是`3D`的,根据同一特征点在多个图片中的不同位置三角化得到的二、各成
- SLAM ORB-SLAM2(12)估算运动并初始地图点
氢键H-H
OpenSLAM#ORB-SLAM2SLAMORB-SLAM2
SLAMORB-SLAM2(12)估算运动并初始地图点1.初始化器1.1.成员变量1.2.构造函数2.估算两帧间相对运动2.1.记录特征点对的匹配关系2.2.RANSAC采样准备过程2.3.查找H矩阵和F矩阵2.4.判断并选取模型求位姿过程3.地图初始化3.1.新建关键帧3.2.建立可视关系3.3.更新优化3.4.建立基础尺度1.初始化器从
- SLAM ORB-SLAM2(13)查找单应矩阵
氢键H-H
OpenSLAM#CartographerSLAMORB-SLAM2
SLAMORB-SLAM2(13)查找单应矩阵1.前言2.FindHomography3.特征点坐标进行归一化4.选择归一化之后的特征点5.八点法计算单应矩阵6.评分并评优1.前言在《SLAMORB-SLAM2(12)估算运动并初始地图点》的2.3.查找H矩阵和F矩阵中/*构造线程来计算H矩阵和F矩阵及其得分*/threadthreadH(&Initializer::FindHomography
- orb-slam2学习总结
谢大旭
SLAM实践分享c++
目录视觉SLAM1、地图初始化2、ORB_SLAM地图初始化流程3、ORB特征提取及匹配1、对极几何2、对极约束(epipolarconstraint)3、基础矩阵F、本质矩阵E5、单目尺度不确定性6、单应矩阵(HomographyMatrix)6.1什么是单应矩阵6.2H矩阵求解7.1基础要点7.2从E矩阵中恢复R、t7.3从H矩阵中恢复R、t7.4R、t值验证7、三角化7.1什么是三角化7.2
- Ubuntu18.04下使用安卓手机Camera和IMU信息运行ORB-SLAM2
…呀嘿…
android
一、Android工具下载1、下载Android_Camera-IMU,将其中的Camera-Imu.apk文件发送至手机端进行安装。下载命令:gitclonehttps://github.com/hitcm/Android_Camera-IMU.git发送至手机的文件在手机端安装以后的软件在手机端安装好以后的软件如下:2、安装功能依赖包:sudoapt-getinstallros-melodic
- ORB-SLAM2 安装
faris_5bing
SLAMpythonopencv
参考修改源文件即可避免兼容问题实验环境Ubuntu20.04ROSnoetichttps://zhuanlan.zhihu.com/p/640795165https://blog.csdn.net/qq_46107892/article/details/128922813https://blog.csdn.net/MRZHUGH/article/details/131658528安装相关依赖通用依
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc