汉密尔顿路径(哈密顿路径)解析

汉密尔顿路径(哈密顿路径)

哈密顿路径也称作哈密顿链,指在一个图中沿边访问每个顶点恰好一次的路径。寻找这样的一个路径是一个典型的NP-完全(NP-complete)问题。后来人们也证明了,找一条哈密顿路的近似比为常数的近似算法也是NP完全的.

算法思路(寻找图中所有的哈密顿路)

  1. 首先用一个邻接矩阵存储图
  2. 将每一个顶点作为起点,查找哈密顿路
  3. 查找哈密顿路的思路:采用递归遍历的方式在递归的搜索的过程中同时需要不断的修改边可以链接的状态。0不可以链接 1 可以链接。
findHamiltonpath(int[][] M, int x, int y, int l) {
        int i;
        for (i = x; i < len; i++) { // Go through row
            if (M[i][y] != 0) { // 2 point connect
                if (detect(path, i + 1))// if detect a point that already in the
                    // path => duplicate
                    continue;
                l++; // Increase path length due to 1 new point is connected
                path[l] = i + 1; // correspond to the array that start at 0,
                                // graph that start at point 1
                if (l == len - 1) {// Except initial point already count
                                   // =>success connect all point
                    count++;
                    if (count == 1)
                        System.out.println("Hamilton path of graph: ");
                    display(path);
                    l--;
                    continue;
                }

                M[i][y] = M[y][i] = 0; // remove the path that has been get and
                findHamiltonpath(M, 0, i, l); // recursively start to find new
                                                // path at new end point
                l--; // reduce path length due to the failure to find new path
                M[i][y] = M[y][i] = 1; // and tranform back to the inital form
                                        // of adjacent matrix(graph)
            }
        }
        path[l + 1] = 0; // disconnect two point correspond the failure to find
                            // the..
    }
  1. 找到图中所有的哈密顿路径并且打印。

算法Java源码

/**
 * @Author PaulMrzhang
 * @Version 2016年11月21日 下午6:59:19
 * @DESC 说明:这份代码是同时给我的,在这里感谢代码的原作者!
 */
public class HamiltonPath {

    public static void main(String[] args) {
        HamiltonPath obj = new HamiltonPath();

        int[][] x = {
                { 0, 1, 0, 1, 0 }, // Represent the graphs in the adjacent
                                    // matrix forms
                { 1, 0, 0, 0, 1 }, { 0, 0, 0, 1, 0 }, { 1, 0, 1, 0, 1 },
                { 0, 1, 0, 1, 0 } };

        int[][] y = { { 0, 1, 0, 0, 0, 1 }, 
                      { 1, 0, 1, 0, 0, 1 },
                      { 0, 1, 0, 1, 1, 0 }, 
                      { 0, 0, 1, 0, 0, 0 },
                      { 0, 0, 1, 0, 0, 1 }, 
                      { 1, 1, 0, 0, 1, 0 } };

        int[][] z = { { 0, 1, 1, 0, 0, 1 }, { 1, 0, 1, 0, 0, 0 },
                { 1, 1, 0, 1, 0, 1 }, { 0, 0, 1, 0, 1, 0 },
                { 0, 0, 0, 1, 0, 1 }, { 1, 0, 1, 0, 1, 0 } };

        obj.allHamiltonPath(x); // list all Hamiltonian paths of graph
        // obj.HamiltonPath(z,1); //list all Hamiltonian paths start at point 1

    }

    static int len;
    static int[] path;
    static int count = 0;

    public void allHamiltonPath(int[][] x) { // List all possible Hamilton path
                                                // in the graph
        len = x.length;
        path = new int[len];
        int i;
        for (i = 0; i < len; i++) { // Go through column(of matrix)
            path[0] = i + 1;
            findHamiltonpath(x, 0, i, 0);
        }
    }

//  public void HamiltonPath(int[][] x, int start) { // List all possible
//                                                      // Hamilton path with
//                                                      // fixed starting point
//      len = x.length;
//      path = new int[len];
//      int i;
//      for (i = start - 1; i < start; i++) { // Go through row(with given
//                                              // column)
//          path[0] = i + 1;
//          findHamiltonpath(x, 0, i, 0);
//      }
//  }

    private void findHamiltonpath(int[][] M, int x, int y, int l) {

        int i;
        for (i = x; i < len; i++) { // Go through row

            if (M[i][y] != 0) { // 2 point connect

                if (detect(path, i + 1))// if detect a point that already in the
                                        // path => duplicate
                    continue;

                l++; // Increase path length due to 1 new point is connected
                path[l] = i + 1; // correspond to the array that start at 0,
                                    // graph that start at point 1
                if (l == len - 1) {// Except initial point already count
                                    // =>success connect all point
                    count++;
                    if (count == 1)
                        System.out.println("Hamilton path of graph: ");
                    display(path);
                    l--;
                    continue;
                }

                M[i][y] = M[y][i] = 0; // remove the path that has been get and
                findHamiltonpath(M, 0, i, l); // recursively start to find new
                                                // path at new end point
                l--; // reduce path length due to the failure to find new path
                M[i][y] = M[y][i] = 1; // and tranform back to the inital form
                                        // of adjacent matrix(graph)
            }
        }
        path[l + 1] = 0; // disconnect two point correspond the failure to find
                            // the..
    } // possible hamilton path at new point(ignore newest point try another
        // one)

    public void display(int[] x) {

        System.out.print(count + " : ");
        for (int i : x) {
            System.out.print(i + " ");
        }
        System.out.println();
    }

    private boolean detect(int[] x, int target) { // Detect duplicate point in
                                                    // Halmilton path
        boolean t = false;
        for (int i : x) {
            if (i == target) {
                t = true;
                break;
            }
        }
        return t;
    }
}

源码解析

采用递归遍历+极限穷举。
好的算法就是更好的对思路的实现,还要有更好的状态控制。
这里的
M[i][y] = M[y][i] = 0;//
M[i][y] = M[y][i] = 1; //
还有对函数的递归调用使用的非常棒!

你可能感兴趣的:(算法数据结构,算法和能力,算法,递归,遍历,哈密顿路,汉密尔顿路)