- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 【论文笔记】Multi-Task Learning as a Bargaining Game
xhyu61
机器学习学习笔记论文笔记论文阅读人工智能深度学习
Abstract本文将多任务学习中的梯度组合步骤视为一种讨价还价式博弈(bargaininggame),通过游戏,各个任务协商出共识梯度更新方向。在一定条件下,这种问题具有唯一解(NashBargainingSolution),可以作为多任务学习中的一种原则方法。本文提出Nash-MTL,推导了其收敛性的理论保证。1Introduction大部分MTL优化算法遵循一个通用方案。计算所有任务的梯度g
- [论文笔记] LLaVA
心心喵
论文笔记论文阅读
一、LLaVA论文中的主要工作和实验结果ExistingGap:之前的大部分工作都在做模态对齐,做图片的representationlearning,而没有针对ChatBot(多轮对话,指令理解)这种场景优化。Contribution:这篇工作已经在BLIP-2之后了,所以Image的理解能力不是LLaVA希望提升的重点,LLaVA是想提升多模态模型的Instruction-Followingab
- [论文笔记] LLM模型剪枝
心心喵
论文笔记论文阅读剪枝算法
AttentionIsAllYouNeedButYouDon’tNeedAllOfItForInferenceofLargeLanguageModelsLLaMA2在剪枝时,跳过ffn和跳过fulllayer的效果差不多。相比跳过ffn/fulllayer,跳过attentionlayer的影响会更小。跳过attentionlayer:7B/13B从100%参数剪枝到66%,平均指标只下降1.7~
- 【论文笔记】Training language models to follow instructions with human feedback B部分
Ctrl+Alt+L
大模型论文整理论文笔记论文阅读语言模型人工智能自然语言处理
TraininglanguagemodelstofollowinstructionswithhumanfeedbackB部分回顾一下第一代GPT-1:设计思路是“海量无标记文本进行无监督预训练+少量有标签文本有监督微调”范式;模型架构是基于Transformer的叠加解码器(掩码自注意力机制、残差、Layernorm);下游各种具体任务的适应是通过在模型架构的输出后增加线性权重WyW_{y}Wy实
- 【论文笔记】:LAYN:用于小目标检测的轻量级多尺度注意力YOLOv8网络
hhhhhhkkkyyy
论文阅读目标检测YOLO
背景针对嵌入式设备对目标检测算法的需求,大多数主流目标检测框架目前缺乏针对小目标的具体改进,然后提出的一种轻量级多尺度注意力YOLOv8小目标检测算法。小目标检测精度低的原因随着网络在训练过程中的加深,检测到的目标容易丢失边缘信息和灰度信息等。获得高级语义信息也较少,图像中可能存在一些噪声信息,误导训练网络学习不正确的特征。映射到原始图像的感受野的大小。当感受野相对较小时,空间结构特征保留较多,但
- 激光SLAM--(8) LeGO-LOAM论文笔记
lonely-stone
slam激光SLAM论文阅读
论文标题:LeGO-LOAM:LightweightandGround-OptimizedLidarOdometryandMappingonVariableTerrain应用在可变地形场景的轻量级的、并利用地面优化的LOAMABSTRACT轻量级的、基于地面优化的LOAM实时进行六自由度位姿估计,应用在地面的车辆上。强调应用在地面车辆上是因为在这里面要求雷达必须水平安装,而像LOAM和LIO-SA
- 论文浅尝 - AAAI2020 | 迈向建立多语言义元知识库:用于 BabelNet Synsets 义元预测...
开放知识图谱
机器学习人工智能知识图谱自然语言处理深度学习
论文笔记整理:潘锐,天津大学硕士。来源:AAAI2020链接:https://arxiv.org/pdf/1912.01795.pdf摘要义原被定义为人类语言的最小语义单位。义原知识库(KBs)是一种包含义原标注词汇的知识库,它已成功地应用于许多自然语言处理任务中。然而,现有的义原知识库建立在少数几种语言上,阻碍了它们的广泛应用。为此论文提出在多语种百科全书词典BabelNet的基础上建立一个统一
- [论文笔记] LLM数据集——LongData-Corpus
心心喵
论文笔记服务器ubuntulinux
https://huggingface.co/datasets/yuyijiong/LongData-Corpus1、hf的数据在开发机上要设置sshkey,然后cat复制之后在设置在hf上2、中文小说数据在云盘上清华大学云盘下载:#!/bin/bash#BaseURLbase_url="https://cloud.tsinghua.edu.cn/d/0670fcb14d294c97b5cf/fi
- [论文笔记] eval-big-refactor lm_eval 每两个任务使用一个gpu,并保证端口未被使用
心心喵
论文笔记restful后端
1.5B在eval时候两个任务一个gpu是可以的。7B+在evalbelebele时会OOM,所以分配时脚本不同。eval_fast.py:importsubprocessimportargparseimportosimportsocket#参数列表task_name_list=["flores_mt_en_to_id","flores_mt_en_to_vi","flores_mt_en_to_
- 【论文笔记】Separating the “Chirp” from the “Chat”: Self-supervised Visual Grounding of Sound and Language
xhyu61
机器学习学习笔记论文笔记论文阅读
Abstract提出了DenseAV,一种新颖的双编码器接地架构,仅通过观看视频学习高分辨率、语义有意义和视听对齐的特征。在没有明确的本地化监督的情况下,DenseAV可以发现单词的"意义"和声音的"位置"。此外,它在没有监督的情况下自动发现并区分这两种类型的关联。DenseAV的定位能力源于一种新的多头特征聚合算子,该算子直接比较稠密的图像和音频表示进行对比学习。相比之下,许多其他学习"全局"音
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- 【视觉三维重建】【论文笔记】Deblurring 3D Gaussian Splatting
CS_Zero
论文阅读
去模糊的3D高斯泼溅,看Demo比3D高斯更加精细,对场景物体细节的还原度更高,[官网](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)背景技术Volumetricrendering-basednerualfields:NeRF.Rasterizationrendering:3D-GS.Rasterization比vol
- [论文笔记] Transformer-XL
心心喵
论文笔记transformer深度学习人工智能
这篇论文提出的Transformer-XL主要是针对Transformer在解决长依赖问题中受到固定长度上下文的限制,如Bert采用的Transformer最大上下文为512(其中是因为计算资源的限制,不是因为位置编码,因为使用的是绝对位置编码正余弦编码)。Transformer-XL能学习超过固定长度的依赖性,而不破坏时间一致性。它由段级递归机制和一种新的位置编码方案组成。该方法不仅能够捕获长期
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 多模态相关论文笔记
靖待
大模型人工智能论文阅读
(cilp)LearningTransferableVisualModelsFromNaturalLanguageSupervision从自然语言监督中学习可迁移的视觉模型openAI2021年2月48页PDFCODECLIP(ContrastiveLanguage-ImagePre-Training)对比语言图像预训练模型引言它比ImageNet模型效果更好,计算效率更高。尤其是zero-sho
- 【论文笔记 · PFM】Lag-Llama: Towards Foundation Models for Time Series Forecasting
lokol.
论文笔记论文阅读llama
Lag-Llama:TowardsFoundationModelsforTimeSeriesForecasting摘要本文提出Lag-Llama,在大量时间序列数据上训练的通用单变量概率时间序列预测模型。模型在分布外泛化能力上取得较好效果。模型使用平滑破坏幂律(smoothlybrokenpower-laws)。介绍目前任务主要集中于在相同域的数据上训练模型。当前已有的大规模通用模型在大规模不同数
- 【论文笔记】Unsupervised Learning of Video Representations using LSTMs
奶茶不加糖え
lstm深度学习自然语言处理
摘要翻译我们使用长短时记忆(LongShortTermMemory,LSTM)网络来学习视频序列的表征。我们的模型使用LSTM编码器将输入序列映射到一个固定长度的表征向量。之后我们用一个或多个LSTM解码器解码这个表征向量来实现不同的任务,比如重建输入序列、预测未来序列。我们对两种输入序列——原始的图像小块和预训练卷积网络提取的高层表征向量——都做了实验。我们探索不同的设计选择,例如解码器的LST
- MOSSE算法论文笔记以及代码解释
five days
计算机视觉深度学习机器学习
论文《VisualObjectTrackingusingAdaptiveCorrelationFilters》代码github1.论文idea提出以滤波器求相关的形式,找到最大响应处的位置,也就是我们所跟踪的目标的中心,进而不断的更新跟踪目标框和滤波器。2.跟踪策略如图,根据初始帧圈出的目标框训练滤波器,最大响应处为目标框的中心点,当移动到下一帧时,根据滤波器求相关的算法获得最大响应值,进而得出下
- Attention Is All Your Need论文笔记
xiaoyan_lu
论文笔记论文阅读
论文解决了什么问题?提出了一个新的简单网络架构——transformer,仅仅是基于注意力机制,完全免去递推和卷积,使得神经网络训练地速度极大地提高。Weproposeanewsimplenetworkarchitecture,theTransformer,basedsolelyonattentionmechanisms,dispensingwithrecurrenceandconvolution
- 论文笔记:相似感知的多模态假新闻检测
图学习的小张
论文笔记论文阅读python
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型实验论文地址:SAFE背景 在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图
- [论文总结] 深度学习在农业领域应用论文笔记12
落痕的寒假
论文总结深度学习论文阅读人工智能
文章目录1.3D-ZeF:A3DZebrafishTrackingBenchmarkDataset(CVPR,2020)摘要背景相关研究所提出的数据集方法和结果个人总结2.Automatedflowerclassificationoveralargenumberofclasses(ComputerVision,Graphics&ImageProcessing,2008)摘要背景分割与分类数据集和实
- 论文笔记之LINE:Large-scale Information Network Embedding
小弦弦喵喵喵
原文:LINE:Large-scaleInformationNetworkEmbedding本文提出一种新的networkembeddingmodel:LINE.能够处理大规模的各式各样的网络,比如:有向图、无向图、有权重图、无权重图.文中指出对于networkembedding问题,需要保留localstructure和globalstructure,分别对应first-orderproximi
- 打败一切NeRF! 3D Gaussian Splatting 的 简单入门知识
Ci_ci 17
3dpython
新手的论文笔记3DGaussianSplatting的笔记introductionRelatedwork预备知识Gaussiansplatting3D高斯泼溅原理Overview3DGaussianSplatting的笔记每次都是在csdn上找救命稻草,这是第一次在csdn上发东西。确实是个不错的笔记网站,还能同步,保存哈哈哈。印象笔记,Onenote逊爆了。研一刚开学两个月,导师放养,给的方向还
- 《Residual Bi-Fusion Feature Pyramid Network for Accurate Single-shot Object Detection》论文笔记
m_buddy
#GeneralObjectDetectionBi-Fusion
参考代码:无1.概述导读:在检测任务中一般会引入FPN增强在不同尺度下网络的检测性能,但是只通过top-down的FPN网络是很难去重建由于特征图的漂移(水平或是垂直方向运动)在经过pooling操作(pooling不具有平移不变性)带来结果相差很大的问题(特别针对小目标),而且FPN带来的性能提升会在使用较多卷积层之后逐渐被稀释(卷积的平移不变形),进而会导致一些小目标定位性能降低。对此可以通过
- 论文笔记-Generative Adversarial Nets
升不上三段的大鱼
论文链接:https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf论文解读:https://www.bilibili.com/video/BV1rb4y187vD?share_source=copy_web一句话总结:提出了生成模型框架GAN,包括一个生成模型G和一个判别模型D,用有监督的损失
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- 论文笔记-vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases
qq_40431700
笔记区块链
核心方法:提出了一种基于累加器的可认证数据结构,可以动态聚合任意查询属性提出块内和块间索引,聚合块内和块间数据,可以做高效查询验证倒排前缀树结构,加速同时处理大量数据的订阅查询提出问题:1.range查询2.布尔查询3.没有可靠第三方、而且不能保证查询的完整性图中元素有:①全节点②矿工节点:是全节点,而且负责构建共识证明,比如计算nonce③轻节点:存nonce、区块的哈希,不存数据记录提出的Vc
- 论文笔记--Improving Language Understanding by Generative Pre-Training
Isawany
论文阅读论文阅读自然语言处理chatgpt语言模型nlp
论文笔记GPT1--ImprovingLanguageUnderstandingbyGenerativePre-Training1.文章简介2.文章导读2.1概括2.2文章重点技术2.2.1无监督预训练2.2.2有监督微调2.2.3不同微调任务的输入3.Bert&GPT4.文章亮点5.原文传送门6.References1.文章简介标题:ImprovingLanguageUnderstandingb
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin