内存管理(八):zone的初始化

linux版本:4.14.74
硬件:ARMV8 A53

1 zone概念

物理内存可以分为内存区域zone,内核定义的对zone类型的定义如下


enum zone_type {
#ifdef CONFIG_ZONE_DMA
	/*
	 * ZONE_DMA is used when there are devices that are not able
	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
	 * carve out the portion of memory that is needed for these devices.
	 * The range is arch specific.
	 *
	 * Some examples
	 *
	 * Architecture		Limit
	 * ---------------------------
	 * parisc, ia64, sparc	<4G
	 * s390			<2G
	 * arm			Various
	 * alpha		Unlimited or 0-16MB.
	 *
	 * i386, x86_64 and multiple other arches
	 * 			<16M.
	 */
	ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
	/*
	 * x86_64 needs two ZONE_DMAs because it supports devices that are
	 * only able to do DMA to the lower 16M but also 32 bit devices that
	 * can only do DMA areas below 4G.
	 */
	ZONE_DMA32,
#endif
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
#endif
	ZONE_MOVABLE,
#ifdef CONFIG_ZONE_DEVICE
	ZONE_DEVICE,
#endif
	__MAX_NR_ZONES

};

  1. ZONE DMA: DMA区域。有些设备不能直接访问所有内存,需要使用DMA区域,如旧的ISA总线只能访问16MB一下的内存
  2. DMA32区域:64位系统,如果既要支持只能访问16MB一下内存的设备,又要支持只能访问4GB以下内存的32位设备,那么必须使用DMA32区域
  3. 普通区域:直接映射到内核虚拟地址空间的内存区域
  4. 高端内存区域,32bit时代的产物,64bit内核虚拟地址空间非常大,完全够用了,不再需要这块区域
  5. 可移动区域,它是一个伪内存区域,用来防止内存碎片。
  6. 设备区域,为了支持永久内存热插拔增加的内存区域

内存区域用一个结构体zone描述


struct zone {
	/* Read-mostly fields */

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long watermark[NR_WMARK];  /*页分配器使用的水线*/
...
	long lowmem_reserve[MAX_NR_ZONES];   //页分配器使用,当前区域保留多少
	                                      //页不能借给高的区域类型
	struct pglist_data	*zone_pgdat;      //指向内存节点的pglist_data实例
	struct per_cpu_pageset __percpu *pageset; //每处理器页集合

...

	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn; //当前区域的起始物理页号

	unsigned long		managed_pages;  //伙伴分配器管理的物理页的数量
	unsigned long		spanned_pages;  //当前区域跨越的总页数,包括空洞
	unsigned long		present_pages;  //当前区域存在的物理页的数量,不包括空洞

	const char		*name;  //区域名称

	/* free areas of different sizes */
	/*不同长度的空闲区域*/
	struct free_area	free_area[MAX_ORDER];
...
} ____cacheline_internodealigned_in_smp;

2 zone 初始化

bootmem_init中将调用zone_sizes_init函数进行zone初始化

void __init bootmem_init(void)
{
	unsigned long min, max;

	min = PFN_UP(memblock_start_of_DRAM());
	max = PFN_DOWN(memblock_end_of_DRAM());

	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);

	max_pfn = max_low_pfn = max;

	arm64_numa_init();
	/*
	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
	 * done after the fixed reservations.
	 */
	arm64_memory_present();

	sparse_init();
	zone_sizes_init(min, max);

	memblock_dump_all();
}

static void __init zone_sizes_init(unsigned long min, unsigned long max)
{
	struct memblock_region *reg;
	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
	unsigned long max_dma = min;

	memset(zone_size, 0, sizeof(zone_size));

	/* 4GB maximum for 32-bit only capable devices */
	/****1***/
#ifdef CONFIG_ZONE_DMA
	max_dma = PFN_DOWN(arm64_dma_phys_limit);
	zone_size[ZONE_DMA] = max_dma - min;
#endif
	zone_size[ZONE_NORMAL] = max - max_dma;

	memcpy(zhole_size, zone_size, sizeof(zhole_size));

	for_each_memblock(memory, reg) {
		unsigned long start = memblock_region_memory_base_pfn(reg);
		unsigned long end = memblock_region_memory_end_pfn(reg);

		if (start >= max)
			continue;

#ifdef CONFIG_ZONE_DMA
		if (start < max_dma) {
			unsigned long dma_end = min(end, max_dma);
			zhole_size[ZONE_DMA] -= dma_end - start;
		}
#endif
		if (end > max_dma) {
			unsigned long normal_end = min(end, max);
			unsigned long normal_start = max(start, max_dma);
			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
		}
	}
    /****2*****/
	free_area_init_node(0, zone_size, min, zhole_size);
}

  1. 是否定义了DMA区域,我的项目中定义了这个区域,并且这个区域最大支持4G大小,而项目中的内存最大也不超过4G,所以实际上只有这一个区域,normal区域也不复存在了
  2. 对pglist字段初始化,管理zone区域

void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;

	/* pg_data_t should be reset to zero when it's allocated */
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);

	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
	pgdat->per_cpu_nodestats = NULL;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
#else
	start_pfn = node_start_pfn;
#endif
/******1*****/
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);

	alloc_node_mem_map(pgdat);
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif

	reset_deferred_meminit(pgdat);
	/***2****/
	free_area_init_core(pgdat);
}

  1. 计算当前zone的page数量,包括spanned_pages(总页数),present_pages(不包含空洞的总页数),并对node的总页数进行累加
  2. 继续对pgdat初始化

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 */
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;

	pgdat_resize_init(pgdat);
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
#endif
	init_waitqueue_head(&pgdat->kswapd_wait);
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
	pgdat_page_ext_init(pgdat);
	spin_lock_init(&pgdat->lru_lock);
	lruvec_init(node_lruvec(pgdat));

	pgdat->per_cpu_nodestats = &boot_nodestats;

	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
		unsigned long size, realsize, freesize, memmap_pages;
		unsigned long zone_start_pfn = zone->zone_start_pfn;

		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;

		/*
		 * Adjust freesize so that it accounts for how much memory
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
		 /******1*****/
		memmap_pages = calc_memmap_size(size, realsize);
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
					zone_names[j], memmap_pages, freesize);
		}

		/* Account for reserved pages */
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
					zone_names[0], dma_reserve);
		}

		if (!is_highmem_idx(j))
			nr_kernel_pages += freesize;
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
		nr_all_pages += freesize;

		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
#ifdef CONFIG_NUMA
		zone->node = nid;
#endif
		zone->name = zone_names[j];
		zone->zone_pgdat = pgdat;
		spin_lock_init(&zone->lock);
		zone_seqlock_init(zone);
		zone_pcp_init(zone);

		if (!size)
			continue;

		set_pageblock_order();
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
		memmap_init(size, nid, j, zone_start_pfn);
	}
}

  1. 一个struct page结构体大小64字节,存储这个区域中可用的页数(present_pages)需要多少struct page,这些struct page总共会占用多少页大小

参考文件

《Linux内核深度解析》

你可能感兴趣的:(Linux内存管理)