- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- 【XR】优化SLAM SDK的稳定性
大江东去浪淘尽千古风流人物
xr
优化SLAMSDK的稳定性是确保增强现实(AR)和虚拟现实(VR)应用在各种环境和设备上都能稳定运行的关键。以下是一些主要的优化方法:1.传感器融合优化方法:将多个传感器的数据(如摄像头、加速度计、陀螺仪、磁力计)进行融合,以补偿单一传感器可能存在的误差。优势:提高了环境理解的准确性,减少了由于单一传感器误差导致的抖动和漂移现象。实例:ARKit和ARCore都利用了传感器融合技术来增强稳定性。2
- 无人机及固定机巢自动化控制软件技术详解
无人机技术圈
无人机技术无人机自动化运维
随着科技的飞速发展,无人机技术已成为众多行业中不可或缺的一部分,特别是在航拍、环境监测、农业植保、应急救援等领域展现出巨大潜力。无人机及固定机巢自动化控制软件作为支撑无人机高效、安全、自主运行的核心,集成了先进的系统架构、飞行控制算法、传感器技术、通信协议及数据处理能力。本文将从系统架构设计、飞行控制算法、传感器融合技术、通信与数据传输、自主巡航与定位、故障检测与预警、应急响应与处理、数据处理与报
- 华为问界M9:领跑未来智能交通的自动驾驶黑科技
华西建筑关联专业公司 华鲲智慧
华为自动驾驶科技
华为问界M9是一款高端电动汽车,其自动驾驶技术是该车型的重要卖点之一。华为在问界M9上采用了多种传感器和高级算法,实现了在不同场景下的自动驾驶功能,包括自动泊车、自适应巡航、车道保持、自动变道等。华为问界M9的自动驾驶技术惊艳之处在于其传感器融合和算法优化。通过多种传感器的融合,车辆可以更加精准地感知周围环境,并实现更加智能的决策和控制。同时,华为在自动驾驶算法方面也进行了大量的优化和改进,使得车
- 基于机器视觉的智能防疫巡检机器人结构设计
biyezuopinvip
机器人机器视觉防疫机器人巡检机器人毕业设计cad图纸论文
目录摘要11绪论31.1课题研究意义31.2智能防疫机器人的现状及发展31.3移动机器人技术的研究现状51.4智能防疫巡检机器人软件研究现状61.5多传感器融合研究现状61.6论文主要内容及结构安排72智能防疫巡检机器人系统需求分析与整体方案设计82.1系统设计的需求分析82.1.1功能需求82.1.2性能需求82.2智能防疫巡检机器人系统方案设计102.2.1整体方案102.2.2软件系统方案1
- veloview读二维雷达数据_Windows下VLP16激光雷达数据解析
大嘴博士
veloview读二维雷达数据
最近,实验室有一个对VLP16数据解析的需求,要求在Windows系统下单独把VLP16的数据解析整理出来,作为后期多传感器融合的一个必要基础准备。无奈从ROS转战Windows,网上查了查Windows系统下velodyne激光雷达的驱动,只找到了一个VeloView,很复杂,VeloView依赖winpcap、paraview、qt、python......单独摘出数据解析模块很麻烦。Kitw
- 环境配置:Udacity的Self-Driving项目安装运行
马上到我碗里来
#环境配置Udacity自动驾驶环境配置
前言Udacity的自动驾驶工程师纳米学位项目(Self-DrivingCarEngineerNanodegreeProgram)是一项面向学习者的前沿技术项目,旨在提供全面的自动驾驶工程师培训。该项目由Udacity与自动驾驶领域的领先公司和专业人士合作开发,涵盖了从传感器融合到深度学习等多个方面的内容。本篇内容将介绍此项目如何在自己的环境中进行配置。希望大家通过这个项目,能够在自动驾驶领域取得
- 基于Raspberry Pi的自动巡航与避障系统(二)
GT开发算法工程师
人工智能python矩阵opencv
在上一篇中,我们讨论了智能小车的避障逻辑实现,在本篇中,我们将进一步扩展智能小车的功能,包括更高级的避障策略、路径规划和导航功能,同时,我们还将提供相应的代码示例,以帮助读者更好地理解和实现这些功能。更高级的避障策略多传感器融合避障:结合使用超声波传感器、红外传感器和摄像头等多种传感器,通过数据融合算法,提高障碍物检测的准确性和可靠性。这样,智能小车可以更准确地判断障碍物的位置、大小和形状,从而采
- 【PMF代码复现及可视化】ICCV 2021 基于视觉感知的多传感器融合点云语义分割
努力弹琴的大风天
融合语义分割算法PMF人工智能计算机视觉
前言本文在Ubuntu18.04下,使用python3.6pytorch1.8.2+torchvision0.9.2环境运行。电脑配置:NVIDIAGeForceRTX3060。显卡不是特别好,运行训练代码花费4天11个小时。数据集非常大,原始数据集按照数据集格式和架构配置完成165.2GB左右,生成semantic-kitti-fov数据集28.1G。如果没有足够的空间,不建议跑这个论文项目。考
- 第一周文献阅读报告
半个轮子工
论文阅读物联网
文献阅读报告泛读1.《毫米波与太赫兹技术》2.《基于物联网的智能养老系统》3.《基于空间聚类的FMCW雷达双人行为识别方法》4.《太赫兹应用分析和展望》5.《车载毫米波雷达应用研究》6.《基于压力传感器的跌倒检测系统研究》7.《基于隐马尔可夫模型的老年人跌倒行为检测方法研究望》8.《矿用卡车毫米波雷达防碰撞系统的研究与应用》9.《基于YOLO网络的人体跌倒检测方法》10.《基于多传感器融合的老人跌
- 解锁多模态独特魅力-“机器人+Agent+多传感器融合+3DLLM”诠释终极组合大招!
xwz小王子
LLM机器人机器人3d自感知全能家务
01-Multiply算法背景01.01-触觉传感器触觉传感器是一种用于感知和测量物体接触力、形状、纹理和其他相关参数的传感器。它们模拟人类触觉系统,通过收集和解释物体与传感器之间的相互作用来获取信息。工作原理:触觉传感器使用不同的原理来感知接触力和其他触觉信息。常见的触觉传感器技术包括压电传感器、电容传感器、电阻传感器、光学传感器和弹性元件等。接触力测量:触觉传感器能够测量物体施加在其表面的接触
- 基于多传感器的后融合的目标跟踪如何实现?都有哪些基本流程?
自动驾驶之心
目标跟踪人工智能计算机视觉机器学习
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取讲师:Edison课程内容:基于多传感器后融合的目标跟踪(0.课前导学1.自动驾驶中的融合跟踪)笔记作者:王汝嘉0.课前导学0.1主讲人介绍0.2课程关键词0.3学习资料推荐1.自动驾驶中的融合跟踪1.1自动驾驶中的感知任务1.2多传感器融合的主要方法1.3多传感器融合跟踪的基本流程1.4多目标跟踪的数据集与性能指标以上内容均出自《
- 2020-05-20
bokli_dw
启发式算法:与过去的经验有关空缺几页少一张回顾遗传算法:交叉变异的概率每年考试是开卷做控制、天线、光通信。你的研究方向是什么?你觉得哪门智能信息处理方法可以在你的研究方向上很有帮助??第九章多传感器融合技术知识表示-模糊集-粗集神经网络-机器学习最重要的是搜索--智能算法:遗传、免疫、蚁群算法。每个算法在哪方面运用起来最得心应手就用哪个fusion--融合无人驾驶:融合很多的信息--信息融合是将来
- Ethzasl MSF编译与运行
稻壳特筑
SLAMC++多信息融合SLAM
多传感器融合框架EthzaslMSFFramework编译与运行:对应论文:ARobustandModularMulti-SensorFusionApproachAppliedtoMAVNavigation.2013RIOS.对应代码:https://github.com/ethz-asl/ethzasl_msf系统:Ubuntu16.03+ROSKinetic创建工作空间:mkdir-p/MSF
- 论文笔记(二十)VisuoTactile 6D Pose Estimation of an In-Hand Object using Vision and Tactile Sensor Data
墨绿色的摆渡人
文章深度学习物体姿势估计系统
VisuoTactile6DPoseEstimationofanIn-HandObjectusingVisionandTactileSensorData文章概括摘要1.介绍2.背景3.网络结构A.视觉触觉传感器融合B.姿势估计器C.损失函数4.数据集的生成A.触觉传感器不变的姿态估计B.数据收集设置C.数据集特征5.实验A.网络训练设置B.硬件部署6.结果A.量化评估B.定性评价C.消融研究D.与
- 多传感器融合SLAM数学学习历程
SensorFusion
多传感器融合学习
多传感器融合SLAM数学学习历程>>>流形和流形空间(姿态)https://blog.csdn.net/professor_Xie/article/details/131911894fast-lio带着问题看知识欧式空间和流形空间的区别和联系?基本结构:欧式空间是我们熟悉的传统三维空间,其中的点由三个实数(x、y、z)表示,具有直角坐标系。在欧式空间中,可以进行常规的线性运算和加法操作。而流形空间
- 革命性突破!全新多传感器辅助惯性导航系统,效能与精准度并肩
3DCV
自动驾驶人工智能机器学习计算机视觉深度学习
作者:小柠檬|来源:3DCV在公众号「3DCV」后台,回复「原论文」获取论文和项目地址大家好,给大家推荐一种高效、强大的多传感器辅助惯性导航系统,具有在线校准功能,能够融合IMU、摄像头、LiDAR、GPS/GNSS和车轮传感器。使用案例:VINS/VIO、GPS-INS、LINS/LIO、用于定位和建图的多传感器融合(SLAM)。原文链接:革命性突破!全新多传感器辅助惯性导航系统,效能与精准度并
- AI加速器与机器学习算法:协同设计与进化
江太翁
人工智能人工智能机器学习算法
作者|ShashankPrasanna翻译|胡燕君此刻,你应该是在电脑或手机上看这篇文章。不管怎样,这些机器都属于现代计算机,它们都有中央处理器(CPU)和其他为特定功能服务的专用芯片,例如显卡、声卡、网卡、传感器融合等。处理特定任务时,专用处理器往往比通用CPU更快更高效。计算机发展早期,CPU都会和专用处理器配合使用。1970年代的8位和16位CPU需要依赖软件来模拟浮点指令,因此执行浮点运算
- 点云从入门到精通技术详解100篇-基于多传感器融合的紧耦合 SLAM 算法
格图素书
自动驾驶人工智能机器学习
目录前言多传感器融合的SLAM相关设备及技术介绍2.1三维刚体运动模型2.1.1坐标系变换
- Autoware 开源框架车辆运动学建模推导
秃头队长
Autoware
学习Autoware开源框架的资料整理,侵删!开源自动驾驶框架Autoware介绍Autoware包含以下模块:1.定位:通过结合GNSS和IMU传感器的3D地图和SLAM算法来实现定位2.检测:使用具有传感器融合算法和深度神经网络的摄像机以及LiDAR3.预测和规划:基于概率机器人技术和基于规则的系统,部分还使用深度神经网络4.控制:Autoware向车辆输出的速度和角速度的扭曲量以上四个模块覆
- 自动驾驶感知-预测-决策-规划-控制学习(3):感知方向文献阅读笔记
棉花糖永远滴神
自动驾驶学习笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、文章主题二、摘要阅读1.名词理解①点云是什么?②二维图像分割器③轻量化卷积网络提取特征④单模态表达和多模态特征融合的区别⑤基于ROS的多传感器融合感知⑥TensorRT工具2.总结摘要三、绪论解析1.首先分析了车道线检测方面有三类工作2.又分析了三维目标检测研究的三类工作3.综述各章节内容四、硬件与软件设计1.总体方案
- 高精地图新基线 | SuperFusion:多层次Lidar-Camera融合,nuScenes SOTA!
自动驾驶之心
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【多传感器融合】技术交流群后台回复【SuperFusion】获取本文代码!!!摘要环境的高精(HD)语义地图生成是自动驾驶的一个重要组成部分。现有方法通过融合不同的传感器模式(如激光雷达和相机),在这项任务中取得了良好的性能。然而,目前的工作基于原始数据或网络特征级融合,仅考虑短距离高精地图生成,限制了其部署到
- 多传感器融合学习笔记
AI视觉网奇
3D视觉学习笔记
目录BevFusionBEVFormer(ECCV2022)eagerMOT利用2D+3D数据多目标跟踪Download3Dand2Ddetections,whichonestodownloaddependsonwhatyouwanttorun:BevFusion最小的模型530多mBevFusion是一种多传感器融合技术,它可以将来自不同传感器(如LiDAR和相机)的数据融合到一个统一的BEV表
- 车载毫米波雷达及芯片新趋势研究3--自动驾驶、国产替代与外延场景需求快速增长打开市场空间
奔袭的算法工程师
行业资讯自动驾驶人工智能机器学习目标检测深度学习
3.1多传感器融合路线优势将不断扩大,引发更多毫米波雷达及芯片需求纯视觉自动驾驶路线是通过以光学摄像头为传感器结合大量算法训练以模拟人类视觉驾驶为逻辑的自动驾驶方案。纯视觉方案“轻硬件、重软件”,由其采用的摄像头成本较低,纯视觉方案的整体硬件成本较低。多传感器融合自动驾驶路线的原理是通过多种类型传感器共同收集路况信息和数据,并通过算法自动分析和综合完成自动驾驶决策的方案。多传感器融合路线能够集
- 【多传感器融合导航论文阅读】
今天我刷leetcode了吗
论文阅读学习方法
多传感器融合导航论文积累知识点总结因子图一致因子图文献阅读笔记[IF18.6]知识点总结因子图FactorGraph是概率图的一种,是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。因子图存在着:两类节点:变量节点和对应的函数节点变量节点所代表的变量是函数节点的自变量。同类节点之间没有边直接相连。一致因子图一致性指的是在该框架中能够保持一致性地更新变量的值,使得整个概率图模型中的变量
- 【论文笔记】Learned Fusion: 3D Object Detection using Calibration-Free Transformer Feature Fusion
byzy
#激光雷达与图像融合论文阅读目标检测计算机视觉自动驾驶深度学习
原文链接:https://arxiv.org/abs/2312.090821.引言目前的3D目标检测一来传感器的校准信息。这种情况下,校准信息需要及其精确,但在产品尺度上,获取高质量校准信息是很困难的(需要逐传感器校准,且运行过程中可能会变化)。本文基于Transformer,提出无需校准信息的传感器融合方法。3.方法从基于Transformer的方法中直接移除校准信息会导致训练困难。3.1Tra
- UBX M8T-10 DSP开发和NMEA解析
汪汪星河
算法
特殊名词:l惯性导航(DR)解决方案采用惯性传感器(陀螺仪和加速计)来辅助GNSS定位技术。l无约束惯性导航(UDR)解决方案持续测量与监测车辆加速度及其方向变化,再通过传感器融合技术将测量数据与GNSS数据进行整合,实时计算并优化分析出更精准的位置结果。l车载惯性导航(ADR)解决方案在此基础上则更进一步,可将车辆轮速脉冲传感器的数据进行整合,实现更高精度的位置计算结果。UbxM8:Ublox-
- 《LIO-SAM阅读笔记》1.IMU预积分模块
Jiqiang_z
机器人linux笔记
前言:LIO-SAM是一个多传感器融合的紧耦合SLAM框架,融合的传感器类型有雷达、IMU和GPS,其中雷达和IMU在LIO-SAM框架中必须使用的。LIO-SAM的优化策略采用了GTSAM库,GTSAM库采用了因子图的优化方法,其提供了一些列C++的外部接口,以便用户方便传入参数等进行优化。特别的是GTSAM库专门单独设计关于IMU计算与优化的接口。IMU预积分模块在LIO-SAM源码中写在了i
- 当我们在讨论多模态融合时?我们究竟在讨论什么?最新多源融合综述!
自动驾驶之心
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取今天自动驾驶之心很荣幸邀请到Xizhu来分享自动驾驶最新的多源传感器融合综述!如果您有相关工作需要分享,请在文末联系我们!>>点击进入→自动驾驶之心【多传感器融合】技术交流群论文作者|Xizhu编辑|自动驾驶之心很荣幸来分享我们的多源数据融合综述~这篇综述文章所关注的核心问题是自动驾驶系统中的多源数据融合技术。多源数据融合对自动驾驶
- 机器人制作开源方案 | “校园卫士”-智能巡检机器人
Robotway
机器人开源
作者:程训聪、柳贺凯、赵坤峰、叶智超、高仁伟单位:黑龙江科技大学指导老师:邵文冕、李杨1.摘要针对校园巡检需求设计机器人本体结构,借助Arduino作为控制核心的巡检机器人控制系统构建方法研究了巡检机器人在校园环境下的导航、控制、多传感器融合等问题。结果表明:该套系统的研发有效解决了校园巡检机器人的攀爬障碍、火灾检测、智能人脸检测、佩戴口罩识别等问题,通过采用分布式结构,保障了整个系统的实时性,实
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class