数据挖掘的应用

数据挖掘综合了各个学科技术,有很多的功能,当前的主要功能如下:

(1)分类:按照分析对象的属性、特征,建立不同的组类来描述事物。例如:银行部门根据以前的数据将客户分成了不同的类别,现在就可以根据这些来区分新申请贷款的客户,以采取相应的贷款方案。

(2)聚类:识别出分析对内在的规则,按照这些规则把对象分成若干类。例如:将申请人分为高度风险申请者,中度风险申请者,低度风险申请者。

(3)关联规则:关联是某种事物发生时其他事物会发生的这样一种联系。例如:每天购买啤酒的人也有可能购买香烟,比重有多大,可以通过关联的支持度和可信度来描述。

(4)预测:把握分析对象发展的规律,对未来的趋势做出预见。例如:对未来经济发展的判断。

(5)偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。例如:在银行的100万笔交易中有500例的欺诈行为,银行为了稳健经营,就要发现这500例的内在因素,减小以后经营的风险。

三、数据挖掘技术在金融领域的应用

目前,在很多领域,数据挖掘(datamining)都是一个很时髦的词,尤其是在如银行、电信、保险、交通、零售(如超级市场)等商业领域。数据挖掘所能解决的典型商业问题包括:数据库营销(Database Marketing)、客户群体划分(CustomerSegmentation & Classification)、背景分析(ProfileAnalysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(CreditScoring)、欺诈发现(Fraud Detection)等等。

1.数据挖掘技术在证券行业的应用

数据挖掘在证券行业的应用方向主要有:客户分析、客户管理、财务指标分析、交易数据分析、风险分析、投资组合分析等。

从业务角度看,经纪业务是目前国内券商竞争的焦点,它仍是券商利润的主要来源。据统计从事经纪业务获得的收入占各主要券商利润来源的80%以上,而中小证券公司90%的利润主要来自证券营业部。

从营销角度看,证券经纪业务是为满足客户需要而提供的一种金融服务活动,营销战略贯穿在证券经纪业务整个活动过程中,分析型客户关系管理(CRM)是国内券商(特别是各营业部)尤其关注的技术,而数据挖掘技术是分析型CRM的核心技术。营业部是否真正了解自己的客户,知道他们的特征、分布和习性?谁是真正的有价值的客户,谁在为证券营业部贡献利润?谁带来了当期的利润,谁又有潜在的价值?传统的按资金量大小来区分大、中、小、散客户价值的方法是否真正反映了客户对营业利润的贡献?凡此种种问题可以通过客户价值分析来解决。它不仅让我们从投入产出角度去看待客户,而且还为营业部的经营方针提供了决策依据。

其典型应用包括有:

(1)客户分析:建立数据仓库来存放对全体客户、预定义客户群、某个客户的信息和交易数据,并通过对这些数据进行挖掘和关联分析,实现面向主题的信息抽取。对客户的需求模式和盈利价值进行分类,找出最有价值和盈利潜力的客户群,以及他们最需要的服务,更好地配置资源,改进服务,牢牢抓住最有价值的客户。通过对客户资源信息进行多角度挖掘,了解客户各项指标(如资产贡献、忠诚度、盈利率、持仓比率等),掌握客户投诉、客户流失等信息,从而在客户离开券商之前,捕获信息,及时采取措施挽留客户。

(2)咨询服务:根据采集行情和交易数据,结合行情分析,预测未来大盘走势,并发现交易情况随着大盘变化的规律,并根据这些规律做出趋势分析,对客户针对性进行咨询。

(3)风险防范:通过对资金数据的分析,可以控制营业风险,同时可以改变公司总部原来的资金控制模式,并通过横向比较及时了解资金情况,起到风险预警的作用。

(4)经营状况分析:通过数据挖掘,可以及时了解营业状况、资金情况、利润情况、客户群分布等重要的信息,并结合大盘走势,提供不同行情条件下的最大收益经营方式。同时,通过对各营业部经营情况的横向比较,以及对本营业部历史数据的纵向比较,对营业部的经营状况作出分析,提出经营建议。

2.数据挖掘技术在银行业的应用
(1)对账户进行信用等级的评估:银行业是负债经营的产业,风险与效益并存,分析账户的信用等级对于降低风险、增加收益是非常重要的。利用数据挖掘工具进行信用评估的最终目的是:从已有的数据中分析得到信用评估的规则或标准,即得到“满足什么样条件的账户属于哪一类信用等级”,并将得到的规则或评估标准应用到对新的账户的信用评估,这是一个获取知识并应用知识的过程。

(2)金融市场分析和预测:对庞大的数据进行主成分分析,剔除无关的,甚至是错误的、相互矛盾的数据“杂质”,以更有效地进行金融市场分析和预测。

(3)分析信用卡的使用模式:通过数据挖掘,人们可以得到这样的规则:“什么样的人使用信用卡属于什么样的模式”,而且一个人在相当长的一段时间内,其使用信用卡的习惯往往是较为固定的。因此,一方面,通过判别信用卡的使用模式,可以监测到信用卡的恶性透支行为;另一方面,根据信用卡的使用模式,可以识别“合法”用户。

(4)发现隐含在数据后面的不同的财政金融指数之间的联系。

(5)探测金融政策与金融业行情的相互影响的关联关系。

3.数据挖掘技术在保险业的应用

(1)保险金的确定:对受险人员的分类有助于确定适当的保险金额度。通过数据挖掘可以得到,对不同行业的人、不同年龄段的人、处于不同社会层次的人的保险金该如何确定。

(2)险种关联分析:分析购买了某种保险的人是否同时购买另一种保险。预测什么样的顾客会购买新险种。

 

你可能感兴趣的:(学科前沿)