- caffemodel特征可视化_Caffe学习笔记4图像特征进行可视化
weixin_39824801
caffemodel特征可视化
Caffe学习笔记4图像特征进行可视化本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/可以算是对它的翻译的总结吧,它可以算是学习笔记2的一个发展,2是介绍怎么提取特征,这是介绍怎么可视化特征1、准备工作首先
- Caffe学习笔记1-安装以及代码结构
baobei0112
CNN卷积神经网络
Caffe学习笔记1-安装以及代码结构ByYuFeiGan2014-12-09更新日期:2014-12-09安装按照官网教程安装,我在OSX10.9和Ubuntu14.04上面都安装成功了。主要麻烦在于gloggflagsgtest这几个依赖项是google上面的需要。由于我用Mac没有CUDA,所以安装时需要设置CPU_ONLY:=1。如果不是干净的系统,安装还是有点麻烦的比如我在OSX10.9
- caffe学习笔记--写一个运行caffe.cpp的makefile
thystar
caffe学习
之前因为有caffe的项目要放到服务器上面,但是其实不需要在服务器上面重新安装caffe,所以写了个makefile.这里改写了个简单的,比较容易读的,只运行caffe.cpp,如果由其他的,可以按照makefile的规则添加就好。首先,还是要说一下关于caffe的依赖,参考之前的两篇博客:http://blog.csdn.net/thystar/article/details/51179064和
- caffe学习笔记10.1--Fine-tuning a Pretrained Network for Style Recognition(new)
thystar
caffe学习
在之前的文章里,写过一个关于微调的博客,但是今天上去发现这部分已经更新了http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb,因此补一篇最新的,关于微调,前面的文章由讲,参考http://blog.csdn.net/thystar/article/details/5067553
- caffe学习笔记(11):多任务学习之HDF5Data类型数据集生成
guyunee
deeplearningmatlabobjectdetection数据标签caffe深度学习
最近开始研究多任务学习(multi-tasklearning,MTL),先分享给大家:本文主要讲述数据集的建立,HDF5Data类型用于处理多标签数据,在网络中定义为:layer{name:"data"type:"HDF5Data"top:"data"top:"label"include{phase:TRAIN}hdf5_data_param{source:"list_train.txt"batc
- Ubuntu14.04下配置Caffe+OpenCV2.4.10+CUDA7.5+cuDNN5.1.10
cuihaolong
3DPrint系统配置
1.CUDA配置与Tensorflow,Keras等深度学习框架一样的配置方法,一次配置可以重用,其他基础软件和依赖项亦可参考:Caffe学习笔记2--Ubuntu14.0464bit安装Caffe(GPU版本)Ubuntu14.04+Caffe+Cuda7.5+Opencv3.0安装教程Caffe+Ubuntu14.0464bit+CUDA6.5配置说明Caffe搭建:Ubuntu14.04+C
- Caffe学习笔记(一): 训练和测试自己的数据集
__Sunshine__
笔记Pythoncaffe训练数据集计算机视觉
1数据准备首先在caffe根目录下建立一个文件夹myfile,用于存放数据文件和后面的caffe模型相关文件。然后在myfile文件夹下建立build_lmdb和datatest两个文件夹,其中build_lmdb文件夹用于存放生成的lmdb文件,datatest文件夹存放图片数据。在datatest下主要有2个文件夹和2个.sh文件和2个.txt文件,其中train文件夹中存放待训练的图片,va
- Caffe学习笔记6:过程小结
Zz鱼丸
之前写的学习笔记1用两种方法进行预测,今天发现有点不对。下面进行分析总结:先来看看Classifier的源代码#!/usr/bin/envpython"""ClassifierisanimageclassifierspecializationofNet."""importnumpyasnpimportcaffeclassClassifier(caffe.Net):"""Classifierexte
- Caffe学习笔记11:Ubuntu 16.04 中 caffe 编译出现的错误——fatal error: hdf5.h: 没有那个文件或目录
weixin_41774576
Caffe
step1:cd/usr/lib/x86_64-linux-gnusudoln-slibhdf5_serial.so.8.0.2libhdf5.sosudoln-slibhdf5_serial_hl.so.8.0.2libhdf5_hl.sostep2:changeMakefile.config//打开Makefile.config将下面的INCLUDE_DIRS:=$(PYTHON_INCLUD
- Caffe学习笔记(1)--在spyder中 import caffe
spcq4
caffe学习笔记
在配置好caffe环境之后无法在anaconda的spyder中直接导入caffe的库,需现先将caffe的路径导入进去。操作如下:importsyscaffe_home='/home/kelly/DL/caffe-master/'sys.path.insert(0,caffe_home+'python')importcaffe
- Caffe学习笔记(2)--spyder 下绘制网络结构
spcq4
caffe学习笔记pythoncaffespyder网络结构
直接使用Caffe中的python脚本绘制网络结构的方法请参照链接:http://www.cnblogs.com/denny402/p/5106764.html。因为本人在学习caffe的时候希望在anaconda的环境下区编辑,所以这里介绍如何在spyder中编写python程序来绘制网络结构图。程序如下:#将caffe包含到路径中importsyscaffe_home='/home/kelly
- Caffe学习笔记(2)优化算法的选择
AshBringer555
Caffe
优化算法的选择参考:1、http://blog.csdn.net/u014595019/article/details/52989301caffe中的优化算法有以下六中可选项,他们分别是SGDAdaDeltaAdaGradAdamNesterovRMSProp1、SGDSGD全名stochasticgradientdescent,即随机梯度下降。不过这里的SGD其实跟MBGD(minibatchg
- Caffe学习笔记
jiarenyf
caffe
目录:安装与配置Tutorial学习PyCaffe学习buildtools学习其他安装与配置Ubuntu14.04安装Caffe(仅CPU)Ubuntu14.04安装CudaUbuntu14.04安装Caffe(GPU)Ubuntu14.04CuDNN安装(Caffe+Cuda7.0下)Tutorial学习Caffe学习:Blobs,Layers,andNetsCaffe学习:Forwardand
- Caffe学习笔记(一)
LaLa_2539
导言今天重新编译了OpenPose的Caffe修改版,准备用于网络的训练,在正式训练网络之前,想先通过实例的学习来对网络训练有大致的认识转化数据为LMDB格式CaffeforPython输入的预处理一、为何需要对输入减去均值?https://blog.csdn.net/GoodShot/article/details/80373372https://blog.csdn.net/dcxhun3/ar
- Caffe学习笔记1:linux下建立自己的数据库训练和测试caffe中已有网络
葭宝
caffe
本文是基于薛开宇《学习笔记3:基于自己的数据训练和测试“caffeNet”》基础上,从头到尾把实验跑了一遍~对该文中不清楚的地方做了更正和说明。主要工作如下:1、下载图片建立数据库2、将图片转化为256*256的lmdb格式3、计算图像均值4、定义网络修改部分参数1、下载图片建立数据库在caffe-master/data下新建一个属于自己的数据库命名为babyjia,并在该文件夹下创建train和
- Caffe学习笔记(四)——Windows 下caffe配置相关问题说明
缄默hong
深度学习
本文主要介绍:Win1064位系统下,再次配置caffe,遇到了一些新的问题,现对这些问题及其解决方法进行总结。详细的安装配置过程见以前博客:Caffe学习笔记(一)——Windows下caffe安装与配置1.CUDA的安装问题CUDA的安装过程可以参考CUDA7.5安装及配置(WIN764英伟达G卡VS2012),但参考到第九步即可,第十步及其以后的过程可以不进行配置;2.编译过程中:无法打开输
- Caffe学习笔记(1):简单的数据可视化
Zongxian_Lee
深度学习python学习笔记数据可视化
caffe的底层是c++写的,如果要进行数据可视化,需要借助其它的库或者是接口,如opencv,python或者是matlab,python的环境需要自行配置,因为我使用的都是网管同志已经配置好的深度学习服务器,所以不用管底层的一些配置问题,如果需要自行配置自己的机器,请参照:http://www.cnblogs.com/denny402/p/5088399.html当前目录为caffe的根目录,
- caffe学习笔记12 -- R-CNN detection
thystar
caffe学习
这是caffe文档中NotebookExamples的倒数第二个例子,链接地址http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/detection.ipynb这个例子用R-CNN做目标检测。R-CNN是一个先进的目标检测模型,它通过微调caffe模型提供分类区域。对于R-CNN系统和模型的详细介绍,参考Richfe
- caffe学习笔记25-过拟合原因及分析
YiLiang_
deeplearningcaffe
1.过拟合原因:1)样本数量太少,抽样方法错误,抽样时没有足够正确考虑业务场景或业务特点,等等导致抽出的样本数据不能有效足够代表业务逻辑或业务场景2)样本里的噪音数据干扰过大,大到模型过分记住了噪音特征,反而忽略了真实的输入输出间的关系3)就是建模时的“逻辑假设”到了模型应用时已经不能成立了,模型没有通用性,选择参数更少的网络4)没有用dropout5)weight_decay:默认0.005,可
- Caffe 学习笔记之CIFFA-10
静风儿
Caffe学习笔记之CIFFA-10背景知识今天小编就亲身实践利用前几天在Ubuntu14.04刚装好的caffe进行CIFFA-10的训练。CIFAR-10数据集包含60000张32x32的彩色图片,一共有十种类别,每种类别有6000张。数据集中有50000张训练集和10000张测试集。这个数据集一共分为了五组训练集和一组测试集,这样子,每组就有10000张随机组成的图片。虽然是随机的,但是在训
- Caffe学习笔记(二)分类任务
yaoyz105
#Caffe深度学习
笔记(二):用Caffe训练好的模型进行分类任务的测试参考:Caffe学习系列(20):用训练好的caffemodel来进行分类用Caffe搭建自己的网络,并用图片进行测试开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了一个caffemodel,该模型可以用来做分类任务。1.准备模型和数据1)caffemodel下载:bvlc_reference_caffenet
- 【caffe学习笔记——cifar10】win10+caffe环境下cifar10运行
文章被改为VIP本文并不知情,且无法修改
caffe入门笔记
本人初学深度学习——caffe框架,想用几个实例来入门,cifar10为其中之一,在参考了博主汽车数据技术前瞻的帖子:http://blog.csdn.net/lance313/article/details/53964874之后,将学习内容进行了总结,总结的内容基本和我参考的帖子差不多,主要目的是加深印象并方便以后查阅。##cifar数据集的介绍##Cifar-10是由Hinton的两个大弟子A
- caffe学习笔记
Gzzgz
caffe
转自http://blog.csdn.net/u011762313/article/details/4730600目录:安装与配置Tutorial学习PyCaffe学习buildtools学习其他安装与配置Ubuntu14.04安装Caffe(仅CPU)Ubuntu14.04安装CudaUbuntu14.04安装Caffe(GPU)Ubuntu14.04CuDNN安装(Caffe+Cuda7.0下
- 【caffe学习笔记之5】Win10系统下Caffe的Python接口设置方法并绘制网络结构图
Shuai__
pythoncaffe
【准备工作】前面几节介绍了win10系统下caffe-master的配置方法以及cifar10数据集的训练方法,并简要介绍了Matlab接口如何配置。想要更为形象的了解caffe框架下诸多网络模型的具体内涵,需要借助python接口的caffe.draw绘制网络图,因此,本节介绍caffe的Python接口配置方法。安装python使用anaconda版本,anaconda里面集成了很多关于pyt
- 【caffe学习笔记之8】Caffe运行Faster-RCNN算法实现目标检测(1)
Shuai__
Matlabcaffe深度学习
【Faster-RCNN算法】FasterR-CNN(其中R对应于“Region(区域)”)是基于深度学习R-CNN系列目标检测最好的方法。使用VOC2007+2012训练集训练,VOC2007测试集测试mAP达到73.2%,目标检测的速度可以达到每秒5帧。技术上将RPN网络和FastR-CNN网络结合到了一起,将RPN获取到的proposal直接连到ROIpooling层,是一个CNN网络实现端
- 【caffe学习笔记之6】caffe-matlab/python训练LeNet模型并应用于mnist数据集(1)
Shuai__
深度学习caffepythonMatlab
【案例介绍】LeNet网络模型是一个用来识别手写数字的最经典的卷积神经网络,是YannLeCun在1998年设计并提出的,是早期卷积神经网络中最有代表性的实验系统之一,其论文是CNN领域第一篇经典之作。本篇博客详细介绍基于Matlab、Python训练lenet手写模型的案例,作为前几次caffe深度学习框架的阶段性总结。【数据准备】数据下载地址:http://yann.lecun.com/exd
- caffe学习笔记6-matlab接口总结
YiLiang_
caffe
第一部分:用matlab接口操作网络,包括网络生成,数据读取及修改,存储caffeemodel,返回layer的类型1.设置网络:model='./models/bvlc_reference_caffenet/deploy.prototxt';weights='./models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel';
- caffe学习笔记(一)
SHERO_M
caffe
ubuntu14.04.1下caffe的安装(cpumode)准备工作,安装各种依赖和OpenCV,代码如下:sudoapt-getinstalllibprotobuf-devlibleveldb-devlibsnappy-devlibopencv-devlibhdf5-serial-devprotobuf-compilersudoapt-getinstall--no-install-recomm
- 【caffe学习笔记之4】利用MATLAB接口运行cifar数据集
Shuai__
MatlabcaffeComputerVision深度学习
【前期准备工作】参考上篇帖子:http://write.blog.csdn.net/postedit/539648741.确保模型训练成功,生成模型文件:cifar10_quick_iter_4000.caffemodel及均值文件:mean.binaryproto。注意,此处一定是生成caffemodel格式的模型文件,而非.h5模型文件,否则会导致Matlab运行崩溃。如何生成caffemod
- caffe学习笔记21-VggNet论文笔记
YiLiang_
caffedeeplearning
AlexNet输入要求256(图像大小),均值是256的,减均值后再crop到227(输入图像大小)VGGNet输入要求256(图像大小),均值是256的,减均值后再crop到224(输入图像大小)Vgg-Net:笔记CNNimprovement:有很多对其提出的CNN结构进行改进的方法。例如:1.Usesmallerreceptivewindowsizeandsmallerstrideofthe
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul