keras搬砖系列-AlexNet

AlexNet小结

AlexNet是比较基本的线型网络。

网络结构:

keras搬砖系列-AlexNet_第1张图片

统共分为8层,前五层为卷积层,后三层为全连接层。

前五层卷积层分别为:(96,(11,11)),(256,(5,5)),(384,(3,3)),(384,(3,3)),(256,(3,3))

keras代码:

# -*- coding: utf-8 -*-
"""
Created on Tue Jan  9 18:30:55 2018

@author: lenovo
AlexNet
"""

from keras.models import Sequential
from keras.layers import Dense,Flatten,Dropout
from keras.layers.convolutional import Conv2D,MaxPooling2D
from keras.utils.np_utils import to_categorical
import numpy as np
seed = 7
np.random.seed(seed)

model = Sequential()
model.add(Conv2D(96,(11,11),strides=(4,4),input_shape=(227,227,3),
                 padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
model.add(Conv2D(256,(5,5),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
model.add(Flatten()) 
model.add(Dense(4096,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy']) 
model.summary()      


你可能感兴趣的:(keras搬砖系列-AlexNet)