双向链表的一个C++实现

 

下面是双向链表的一个C++实现,参考了《数据结构与算法分析C语言版》及不少牛人的分析总结,在此一并感谢了。在VC2005上经反复验证试验,结果非常不错,操作集合以后会继续增加。但可能还有不少bug,如果发现bug, 请告诉我一下。

  注意:单链表及双向及循环链表均不使用表头(即哑节点,dummy node), 即m_pNodeHead指向链表的第一个真正的节点。

/*dlist.h*/

#include 
#include 

template
class Node
{
public:
	T data;
	Node *prior;
	Node *next;
	Node() : data(T()), prior(NULL), next(NULL) {}
	Node(const T &initdata) : data(initdata), prior(NULL), next(NULL) {}
};

template
class DList
{
protected:
	int m_nCount;
	Node *m_pNodeHead;
	Node *m_pNodeTail;

public:
	DList();
	DList(const T &initdata);
	DList(const DList& other);
	DList& operator=(const DList& other);
	~DList();

public:
	////插入或删除需要注意处理:插入节点本身的next 和prior,前一个节点的next,后一个节点的prior.
	//注意在第一个节点或最后一个节点插入或删除时的特殊情况:前一个或后一个节点为NULL,而且注意移动m_pNodeHead或m_pNodeTail
	void    Invert();
	int     IsEmpty() const;
	int     GetCount() const;
	int     InsertBefore(const int pos, const T data);
	int     InsertAfter(const int pos, const T data);
	int     AddHead(const T data);
	int     AddTail(const T data);
	void    RemoveAt(const int pos);
	void    RemoveHead();
	void    RemoveTail();
	void    RemoveAll();
	T&      GetTail();
	T       GetTail() const;
	T&      GetHead();
	T       GetHead() const;
	T&      GetAt(const int pos);
	T       GetAt(const int pos) const;
	void    SetAt(const int pos, T data);
	int     Find(const T data) const;
	int     FindCircle() const;
	int     FindCross(DList& testlist);
	T&      GetPrev(int &pos);
	T&      GetNext(int &pos);
};

template
inline DList::DList() : m_nCount(0), m_pNodeHead(NULL), m_pNodeTail(NULL)
{
}

template
inline DList::DList(const T &initdata)
: m_nCount(0), m_pNodeHead(NULL), m_pNodeTail(NULL)
{
	AddHead(initdata);
}

template
inline DList::DList(const DList& other)
: m_nCount(0), m_pNodeHead(NULL), m_pNodeTail(NULL)
{
	if(other.m_nCount>0)
	{
		for(int i=1;i<=other.m_nCount;i++)
		{
			AddTail(other.GetAt(i));
		}
	}
}


template
inline DList& DList::operator=(const DList& other)
{
	if(this==&other)
	{
		return *this;
	}
	if(m_nCount>0)
	{
		RemoveAll();
	}

	if(other.m_nCount>0)
	{
		for(int i=1;i<=other.m_nCount;i++)
		{
			AddTail(other.GetAt(i));
		}
	}

	return *this;
}

template
inline DList::~DList()
{
	RemoveAll();
}

template
inline void DList::Invert()
{
	if(m_nCount<=1) return;
	Node *tmpNod,*curNod,*nextNod;
	curNod=m_pNodeHead;
	for(int i=1;i<=m_nCount;i++)
	{
        nextNod=curNod->next;
		tmpNod=curNod->prior;
		curNod->prior=curNod->next;
		curNod->next=tmpNod;
		curNod=nextNod;
	}

	tmpNod=m_pNodeHead;
	m_pNodeHead=m_pNodeTail;
	m_pNodeTail=tmpNod;
	return;
}

//insert data before pos.
template
inline int DList::InsertBefore(const int pos, const T data)
{
	int i;
	int nRetPos;
	Node *pTmpNode;
	Node *pNewNode;

	try
	{
		pNewNode = new Node;
	}
	catch(std::bad_alloc&)
	{
		nRetPos = 0;
		return nRetPos;
	}

	pNewNode->data = data;

	// if the list is empty, replace the head node with the new node.
	if (NULL == m_pNodeHead)
	{
		pNewNode->prior = NULL;
		pNewNode->next = NULL;
		m_pNodeHead = pNewNode;
		m_pNodeTail = pNewNode;
		nRetPos = 1;
		++m_nCount;
		return nRetPos;
	}

	// is pos range valid?
	ASSERT(1 <= pos && pos <= m_nCount);

	// insert before head node?
	if (1 == pos)
	{
		pNewNode->prior = NULL;
		pNewNode->next = m_pNodeHead;
		m_pNodeHead->prior = pNewNode;
		m_pNodeHead = pNewNode;
		nRetPos = 1;
		++m_nCount;
		return nRetPos;
	}

	// if the list is not empty and is not inserted before head node,
	// seek to the pos of the list and insert the new node before it.
	pTmpNode = m_pNodeHead;
	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}
	pNewNode->next = pTmpNode;
	pNewNode->prior = pTmpNode->prior;

	pTmpNode->prior->next = pNewNode;
	pTmpNode->prior = pNewNode;

	// if tail node, must update m_pNodeTail
	if (NULL == pNewNode->next)
	{
		m_pNodeTail = pNewNode;
	}

	nRetPos = pos;

	++m_nCount;
	return nRetPos;
}
//insert data after pos
template
inline int DList::InsertAfter(const int pos, const T data)
{
	int i;
	int nRetPos;
	Node *pNewNode;
	Node *pTmpNode;

	try
	{
		pNewNode = new Node;
	}
	catch(std::bad_alloc&)
	{
		nRetPos = 0;
		return nRetPos;
	}

	pNewNode->data = data;

	// if the list is empty, replace the head node with the new node.
	if (NULL == m_pNodeHead)
	{
		pNewNode->prior = NULL;
		pNewNode->next = NULL;
		m_pNodeHead = pNewNode;
		m_pNodeTail = pNewNode;
		nRetPos = 1;
		++m_nCount;
		return nRetPos;
	}

	// is pos range valid?
	ASSERT(1 <= pos && pos <= m_nCount);

	// if the list is not empty,
	// seek to the pos of the list and insert the new node after it.
	pTmpNode = m_pNodeHead;
	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}

	pNewNode->next = pTmpNode->next;
	pNewNode->prior = pTmpNode;

	pTmpNode->next = pNewNode;
    //modified by myself 
	// if tail node, must update m_pNodeTail
	if(NULL==pNewNode->next)
	{
		m_pNodeTail = pNewNode;
	}
	else
	{
		pNewNode->next->prior=pNewNode;
	}

	nRetPos = pos + 1;

	++m_nCount;
	return nRetPos;
}

template
inline T& DList::GetAt(const int pos)
{
	ASSERT(1 <= pos && pos <= m_nCount);

	int i;
	Node *pTmpNode = m_pNodeHead;

	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}

	return pTmpNode->data;
}

template
inline T DList::GetAt(const int pos) const
{
	ASSERT(1 <= pos && pos <= m_nCount);

	int i;
	Node *pTmpNode = m_pNodeHead;

	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}

	return pTmpNode->data;
}

template
inline int DList::AddHead(const T data)
{
	return InsertBefore(1, data);
}

template
inline int DList::AddTail(const T data)
{
	return InsertAfter(GetCount(), data);
}

template
inline int DList::IsEmpty() const
{
	return 0 == m_nCount;
}

template
inline int DList::GetCount() const
{
	return m_nCount;
}

template
inline T& DList::GetTail()
{
	ASSERT(0 != m_nCount);
	return m_pNodeTail->data;
}

template
inline T DList::GetTail() const
{
	ASSERT(0 != m_nCount);
	return m_pNodeTail->data;
}

template
inline T& DList::GetHead()
{
	ASSERT(0 != m_nCount);
	return m_pNodeHead->data;
}

template
inline T DList::GetHead() const
{
	ASSERT(0 != m_nCount);
	return m_pNodeHead->data;
}
//as its name, delete the data at pos
template
inline void DList::RemoveAt(const int pos)
{
	ASSERT(1 <= pos && pos <= m_nCount);

	int i;
	Node *pTmpNode = m_pNodeHead;

	// head node?
	if (1 == pos)
	{
		m_pNodeHead = m_pNodeHead->next;
		if(m_pNodeHead)
		{
			m_pNodeHead->prior=NULL;
		}
        
		delete pTmpNode;
		--m_nCount;
		if (0 == m_nCount)
		{
			m_pNodeTail = NULL;
		}

		return;
	}

	//otherwise...
	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}
	pTmpNode->prior->next = pTmpNode->next;
	//last node?
	if(pTmpNode->next)
	{
		pTmpNode->next->prior=pTmpNode->prior;
	}
	else
	{
		m_pNodeTail=pTmpNode->prior;
	}


	delete pTmpNode;
	--m_nCount;
	if (0 == m_nCount)
	{
		m_pNodeTail = NULL;
	}

	return;
}

template
inline void DList::RemoveHead()
{
	ASSERT(0 != m_nCount);
	RemoveAt(1);
}

template
inline void DList::RemoveTail()
{
	ASSERT(0 != m_nCount);
	RemoveAt(m_nCount);
}

template
inline void DList::RemoveAll()
{
	int i;
	int nCount;
	Node *pTmpNode;

	nCount = m_nCount;
	for (i = 0; i < nCount; ++i)
	{
		pTmpNode = m_pNodeHead->next;
		delete m_pNodeHead;
		m_pNodeHead = pTmpNode;
	}
	m_pNodeHead=NULL;
	m_pNodeTail=NULL;
	m_nCount = 0;
}

template
inline void DList::SetAt(const int pos, T data)
{
	ASSERT(1 <= pos && pos <= m_nCount);

	int i;
	Node *pTmpNode = m_pNodeHead;

	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}
	pTmpNode->data = data;
}

template
inline int DList::Find(const T data) const
{
	int i;
	int nCount;
	Node *pTmpNode = m_pNodeHead;

	nCount = m_nCount;
	for (i = 0; i < nCount; ++i)
	{
		if (data == pTmpNode->data)
			return i + 1;
		pTmpNode = pTmpNode->next;
	}

	return 0;
}

/*判断链表是否有环,如果有环则返回环的首结点位置,否则返回0*/    
template
inline int DList::FindCircle() const
{
	if(0==m_nCount)  
	{  
		return 0;  
	}  

	Node* p1=m_pNodeHead;  
	Node* p2=m_pNodeHead;  

	/*判断链表是否有环,当p1=p2时说明链表有环,程序跳出循环。如果p2一直走到链表尽头则说明没有环。*/    
	do{    
		if(p1!=NULL&&p2!=NULL&&p2->next!=NULL)    
		{    
			p1=p1->next;    
			p2=p2->next->next;       
		}    
		else    
			return 0;    
	}    
	while(p1!=p2);   

	/*求出环的起点节点,并将其返回*/    
	p2=m_pNodeHead;    
	while(p1!=p2)    
	{    
		p1=p1->next;    
		p2=p2->next;        
	}    

	int i;  
	p2=m_pNodeHead;  
	for(i=1;i<=m_nCount;i++)  
	{  
		if(p1==p2) break;  
		p2=p2->next;  
	}  
	return i;  

}

/*判断两个链表是否交叉,如果交叉返回首个交叉节点位置(在本链表中的位置,而不是testlist中的位置),否则返回0。 
假定:这两个链表本身均无环*/    
template
inline int DList::FindCross(DList& testlist)
{
	if(0==m_nCount||0==testlist.m_nCount)  
	{  
		return 0;  
	}  

	if(FindCircle()||testlist.FindCircle())  
	{  
		return 0;  
	}  

	/*将第二个链表接在第一个链表后面*/    
	Node* pTail=m_pNodeHead;  
	for(int i=1;inext;  
	}  

	pTail=testlist.m_pNodeHead;  
	m_nCount+=testlist.m_nCount;  

	int i=FindCircle();  

	pTail=NULL;  
	m_nCount-=testlist.m_nCount;  
	return i;  

}
//get the data at pos and let pos=pos+1 
template
inline T& DList::GetNext(int &pos)
{
	ASSERT(0 != m_nCount);
	ASSERT(1 <= pos && pos <= m_nCount);

	int i;
	Node *pTmpNode = m_pNodeHead;

	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}

	++pos;

	return pTmpNode->data;
}

//get the data at pos and let pos=pos-1
template
inline T& DList::GetPrev(int &pos)
{
	ASSERT(0 != m_nCount);
	ASSERT(1 <= pos && pos <= m_nCount);

	int i;
	Node *pTmpNode = m_pNodeHead;

	for (i = 1; i < pos; ++i)
	{
		pTmpNode = pTmpNode->next;
	}

	--pos;

	return pTmpNode->data;
}

#endif  // __DOUBLE_LIST_H__

你可能感兴趣的:(数据结构与算法)