- 深度可分离卷积本质上是一种分支网络结构,分支网络结构有以下好处:
a.可提供不同的视野域
b.提升效率
- 深度可分离卷积使用通道分支,能够减少参数提高计算效率,但同时也会造成梯度损失。深度可分离卷积由于其训练参数小的特点可以在手机上实现。
- tf.keras 实现较简单,仅需把卷积神经网络中的除输入层外的Conv2D替换为SeparableConv2D。(tensorflow2.0学习笔记:卷积神经网络(CNN))
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all,y_train_all),(x_test,y_test) = fashion_mnist.load_data()
x_valid,x_train = x_train_all[:5000],x_train_all[5000:]
y_valid,y_train = y_train_all[:5000],y_train_all[5000:]
print(x_valid.shape,y_valid.shape)
print(x_train.shape,y_train.shape)
print(x_test.shape,y_test.shape)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
print(np.max(x_train_scaled),np.min(x_train_scaled))
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(filters=32,kernel_size=3,padding='same',activation='selu',input_shape=(28,28,1)))
model.add(keras.layers.SeparableConv2D(filters=32,kernel_size=3,padding='same',activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.SeparableConv2D(filters=64,kernel_size=3,padding='same',activation='selu'))
model.add(keras.layers.SeparableConv2D(filters=64,kernel_size=3,padding='same',activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.SeparableConv2D(filters=128,kernel_size=3,padding='same',activation='selu'))
model.add(keras.layers.SeparableConv2D(filters=128,kernel_size=3,padding='same',activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128,activation='selu'))
model.add(keras.layers.Dense(10,activation='softmax'))
model.compile(loss="sparse_categorical_crossentropy",
optimizer = "adam",
metrics = ["accuracy"])
model.summary()
logdir = os.path.join('./separable_cnn_callbacks')
if not os.path.exists(logdir):
os.mkdir(logdir)
output_model_file = os.path.join(logdir,"fashion_mnist_model.h5")
callbacks = [
keras.callbacks.ModelCheckpoint(output_model_file,save_best_only = True),
keras.callbacks.EarlyStopping(monitor="val_loss",patience=5,min_delta=1e-3)
]
history = model.fit(x_train_scaled,y_train,epochs=1,
validation_data=(x_valid_scaled,y_valid))
def plot_learning_curve(history):
pd.DataFrame(history.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,3)
plt.show()
plot_learning_curve(history)
y = model.evaluate(x_test_scaled,y_test)