Pytorch源码学习之七:torchvision.models.googlenet

0.基本知识

torchvision.models.googlenet源码地址
GoogLeNet论文地址

  • Inception模块
    Pytorch源码学习之七:torchvision.models.googlenet_第1张图片
    注意,代码中第三个模块采取的3x3卷积而非5x5卷积,不知为何。
    -GoogLeNet网络结构
    Pytorch源码学习之七:torchvision.models.googlenet_第2张图片
  • GoogLeNet网络结构可视化
    Pytorch源码学习之七:torchvision.models.googlenet_第3张图片
    这里注意两个辅助的输出

一、源码

import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
from collections import namedtuple
from torch.hub import load_state_dict_from_url

__all__ = ['GoogLeNet', 'googlenet']

model_urls = {
    # GoogLeNet ported from TensorFlow
    'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
}

_GoogLeNetOuputs = namedtuple('GoogLeNetOuputs', ['logits', 'aux_logits2', 'aux_logits1'])

class BasicBlock(nn.Module):
    def __init(self, in_channels, out_channels, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)

        return F.relu(x, inplace=True)

class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicBlock(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicBlock(in_channels, ch3x3red, kernel_size=1),
            BasicBlock(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )

        self.branch3 = nn.Sequential(
            BasicBlock(in_channels, ch5x5red, kernel_size=1),
            BasicBlock(ch5x5red, ch5x5, kernel_size=3, padding=1)
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
            BasicBlock(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)

class InceptionAux(nn.Module):

    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.conv = BasicBlock(in_channels, 128, kernel_size=1)

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = F.adaptive_avg_pool2d(x, (4, 4))
        # aux1 : N x 512 x 4 x 4, aux2 : N X 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = x.view(x.size(0), -1)
        # N x 2048
        x = self.fc1(x)
        # N x 1024
        x = F.relu(x, inplace=True)
        x = F.dropout(x, 0.7, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x

class GoogLeNet(nn.Module):

    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        self.transform_input = transform_input

        self.conv1 = BasicBlock(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.conv2 = BasicBlock(64, 64, kernel_size=1)
        self.conv3 = BasicBlock(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32) #64+128+32+32=256
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64) #128+192+96+64=480
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64) # 192+208+48+64=512
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)#160+224+64+64=512
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)#128+256_64+64=512
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)#112+288+64+64=528
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)#256+320+128+128=832
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)#256+320+128+128=832
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)#384+384+128+128=1024

        if aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.2)
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
            self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                import scipy.stats as stats
                X = stats.truncnorm(-2, 2, scale=0.01)
                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                values = values.view(m.weight.size())
                with torch.no_grad():
                    m.weight.copy_(values)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)

        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = x.view(x.size(0), -1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000(num_classes)
        if self.training and self.aux_logits:
            return _GoogLeNetOuputs(x, aux2, aux1)
        return x

def googlenet(pretrained=False, progress=True, **kwargs):

    if pretrained:
        if 'transform_input' not in kwargs:
            kwargs['transform_input'] = True
        if 'aux_logits' not in kwargs:
            kwargs['aux_logits'] = False
        if kwargs['aux_logits']:
            warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, '
                          'so make sure to train them')
        original_aux_logits = kwargs['aux_logits']
        kwargs['aux_logits'] = True
        kwargs['init_weights'] = False
        model = GoogLeNet(**kwargs)
        state_dict = load_state_dict_from_url(model_urls['googlenet'],
                                              progress=progress)
        model.load_state_dict(state_dict)
        if not original_aux_logits:
            model.aux_logits = False
            del model.aux1, model.aux2
        return model
    return GoogLeNet(**kwargs)

二、一些有趣的用法

1.collections.namedtuple

使用以下方式来返回辅助输出和最终输出,方便索引.

from collections import namedtuple
_GoogLeNetOuputs = namedtuple('GoogLeNetOuputs', ['logits', 'aux_logits2', 'aux_logits1'])
class GoogLeNet(nn.Module):
	...
	def forward(self, x):
		...
		if self.training and self.aux_logits:
            return _GoogLeNetOuputs(x, aux2, aux1)

warnings来返回自定义警告

import warnings
if pretrained:
	if kwargs['aux_logits']:
		warning.warn('your warnings')

你可能感兴趣的:(Pytorch源码学习,Python基础)