- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- 关于CNN
御风之星
1.理解卷积神经网络中的通道channel2.手把手教你用TensorFlow实现卷积神经网络3.tensorflow笔记:多层CNN代码分析
- 2021-07-02
fisher-nuc
tensorflow神经网络
基于TensorFlow搭建的几种经典的卷积神经网络注:本文是本人一门课程的期末大作业,在学习曹建老师(人工智能实践:TensorFlow笔记)的课程时记录的笔记。在进行整理后写的一篇小文章,具体详解可以在B站或者MOOC上搜索相关课程。课程网站:https://www.icourse163.org/learn/PKU-1002536002?tid=1003797005#/learn/announ
- (一)tensorflow笔记:Tensor数据类型
阿松丶
TensorFlow详细笔记tensorflowpython深度学习
常见的数据类型载体listnp.arraytf.tensorlist:可以存储不同数据类型,缺点不适合存储较大的数据,如图片np.array:解决同类型大数据数据的载体,方便数据运算,缺点是在深度学习之前就设计好的,不支持GPUtf.tensor:更适合深度学习,支持GPUTensor是什么scalar:1.1vector:[1.1],[1.1,2.2,……]matrix:[[1,2,3,],[4
- tensorflow笔记(编程理论部分)
orangehsc
tensorflowpython矩阵算法
TensorFlow笔记(编程理论部分)注:该笔记是阅读TensorFlow深度学习算法原理与编程实战第三章后做的框架梳理和部分个人见解。Tensorflow之名由Tensor和Flow组成,Tensor意为张量,可以理解为数组;Flow意为流动,指张量数据沿着边在不同的节点间流动并发生转化。1.1计算图TensorFlow中的各种操作,如加权求和,激活函数等,都被编排成一个图,称为计算图。计算图
- tensorflow笔记
_夏雨潇潇
#tensorflow笔记一个小例子#用numpy构造数据x_data=np.random.rand(100).astype(np.float32)y_data=x_data*0.1+0.3#tf.Variable定义了一个变量,random_uniform表示用随机的方式生成变量的初始值#1表示这个变量是一维的,变量的初始范围是-1到1Weights=tf.Variable(tf.random_
- TensorFlow笔记之卷积神经网络
Mr_Stutter
Python机器学习cnntensorflow深度学习
文章目录前言一、卷积神经网络CNN二、Tensorflow1.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化二、Tensorflow2.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化总结前言记录在tf1.x与tf2.x中使用卷积神经网络完成CIFAR-10数据集识别多分类任务,并进行断点续训。一、卷积神经网络CNN1、全连接网络:参数增多,速度减慢,过拟合2
- tensorflow笔记----3---ANN对mnist数据集分类
骑着蜗牛逛世界
tensorflow
tensorfllow实现两层MLP对mnist分类,第一层256个神经元,第二层128个神经元,输入784,输出10分类#!/usr/bin/python#-*-coding:utf-8-*-__author__="chunming"importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_datamnist=i
- Tensorflow笔记 3.3 反向传播
CCWUCMCTS
概念反向传播训练模型参数,在所有参数上使用梯度下降,使NN模型在训练数据上的损失函数最小。损失函数预测值与已知答案的差距。均方误差loss=tf.reduce_mean(tf.square(y_-y))反向传播的训练方法三种方式,见代码。学习率参数更新幅度。实战loss#coding:utf-8#0导入模块,生成模拟数据集。importtensorflowastfimportnumpyasnpBA
- DL with python(16)——tensorflow实现InceptionNet(GoogLeNet)
佟湘玉滴玉
Python深度学习深度学习python
本文涉及到的是中国大学慕课《人工智能实践:Tensorflow笔记》第五讲第14节的内容,对tensorflow环境下经典卷积神经网络的搭建进行介绍,其基础是DLwithpython(14)——tensorflow实现CNN的“八股”中的代码,将其中第三步的代码替换为本文中的代码均可直接运行,其他部分无需改变。经典的卷积神经网络有以下几种,这里介绍结构较为复杂的InceptionNet,其实现的方
- [tensorflow笔记]-tensorflow实现带mask的reduce_mean
黄然大悟
Tensorflow&Kerastensorflowreduce_meanmask平均
在使用tensorflow处理一些tensor时,有时需要对一个tensor取平均,可以使用tf.reduce_mean操作,但是这个没法处理带有mask的tensor数据,本文主要就是利用tensorflow的基本操作实现带mask的平均。tf.reduce_mean比如我们的数据是3维tensor,shape=(B,N,H),B表示batch_size、N表示最大长度、H表示向量维度,这样的3
- 学习tensorflow笔记1、梯度计算
weixin_51298826
tensorflow学习笔记tensorflowpython深度学习
1、梯度计算学习北京大学的mooc,记录笔记代码块:生成一个变量w初值为5,设定为可训练学习率lr大小会影响梯度下降的速度和步幅迭代次数epochimporttensorflowastfimportmatplotlib.pyplotaspltw=tf.Variable(tf.constant(5,dtype=tf.float32))lr=0.9epoch=40plt_show=[]forepoch
- Tensorflow笔记——tf.layers.dense的用法
·城府、
深度学习神经网络
1.tf.layers.dense的用法dense:相当于一个全连接层函数解释如下:tf.layers.dense(inputs,units,activation=None,use_bias=True,kernel_initializer=None,bias_initializer=tf.zeros_initializer(),kernel_regularizer=None,bias_regula
- TensorFlow笔记之神经网络完成多分类任务
Mr_Stutter
Python机器学习tensorflow神经网络分类
文章目录前言一、数据集调用二、Tensorflow1.x1.单隐藏层2.模型保存与调用三、Tensorflow2.x1.全连接层类2.keras建模总结前言对TensorFlow笔记之单神经元完成多分类任务进行修改,在tf1.x与tf2.x中使用神经网络完成手写体数字识别多分类任务。一、数据集调用数据集调用与预处理和上一篇完全相同#数据集调用,在tensorflow2.x中调用数据集importt
- TensorFlow2安装(超详细步骤-人工智能实践)
不唐
Python深度学习TensorFlowtensorflow深度学习python
TensorFlow2安装教程1前言1.1版本记录1.2工具简介2详细步骤及安装语句2.1安装Anaconda2.2TensoFlow安装2.3验证是否成功2.4PyCharm下载与安装2.5PyCharm环境配置2.5.1不唐初尝试1前言点滴进步,加油!最近在MOOC看北京大学的曹健老师的《人工智能实践:Tensorflow笔记》课程。其中第一章的第8节提到了详细的TensorFlow安装过程。
- tensorflow笔记(十九)——错误集锦
starxhong
tensorflowtensorflow深度学习错误
错误及应对方案1,问题:训练正常,预测和评估的时候报OOM:办法:减少预测和训练的batchsize,或者减少网络参数。参考:ResourceExhaustedError(seeabovefortraceback):OOMwhenallocatingtensorofshape[7744,512]#33932,问题:从dataset打印数据,报错OP_REQUIRESfailedatexample_
- InceptionNet与ResNet
九思Atopos
tensorflow笔记深度学习pythontensorflow
以下代码图片思路来源:北京大学Tensorflow笔记嗯,最近学了一下神经网络,并没有很难,主要是把代码背下来,然后掌握Tensorflow是怎么搭建网络的,Tensorflow是比pytorch好用的,我直接抄的代码里面,训练还要自己写循环,,而tensonflow直接调用fit函数即可和老师做了一下InceptionNet还有ResNet,ResNet主要是有一条path,由于维度不同需要使用
- TensorFlow笔记之多元线性回归
Mr_Stutter
Python机器学习tensorflow线性回归python
文章目录前言一、数据处理二、TensorFlow1.x1.定义模型2.训练模型3.结果可视化4.模型预测5.TensorBoard可视化三、TensorFlow2.x1.定义模型2.训练模型3.结果可视化4.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成多元线性回归的过程。一、数据处理在此使用波士顿房价数据集,包含506个样本,输入为12个房屋信息特征,输出为房
- TensorFlow笔记之单变量线性回归
Mr_Stutter
Python机器学习tensorflow线性回归
文章目录前言一、数据集生成二、TensorFlow1.x1.定义模型2.训练模型3.模型预测三、TensorFlow2.x1.定义模型2.训练模型3.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成单变量线性回归的过程。一、数据集生成生成带标准正态分布噪声的y=2x+1数据集importnumpyasnpimportmatplotlib.pyplotasplt#数
- Tensorflow笔记之【神经网络的初步搭建】
不理不理不理左卫门
机器学习Tensorflow
一、基本概念基于Tensorflow的神经网络用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重,得到模型。张量——多维数组参数——神经元线上的权重计算图——搭建神经网络的计算过程,只搭建不计算会话——执行计算图中的节点运算例:矩阵乘法importtensorflowastf#引入模块x=tf.constant([[1.0,2.0]])#定义一个2阶1x2张量等于[[1.0,2
- TensorFlow笔记之单神经元完成多分类任务
Mr_Stutter
Python机器学习tensorflow分类
文章目录前言一、逻辑回归1.二分类问题2.多分类问题二、数据集调用三、TensorFlow1.x1.定义模型2.训练模型3.结果可视化四、TensorFlow2.x1.定义模型2.训练模型3.结果可视化总结前言记录分别在TensorFlow1.x与TensorFlow2.x中使用单神经元完成MNIST手写数字识别的过程。一、逻辑回归将回归值映射为各分类的概率1.二分类问题1.sigmod函数:y=
- 1TensorFlow笔记——基础概念简介&Python简明教程
weixin_45165961
pythontensorflow
0.1人工智能让机器看起来跟人一样,目前处于弱人工智能NarrowAI,距离强人工智能GeneralAI还有很大一段路要走。0.1.1机器学习让计算机自动学习,获得规律(模型),用新规律预测。0.1.2分类有监督学习:给带结果的数据进行训练,线性回归、逻辑回归、支持向量机、随机森林等。无监督学习:给数据,找规律进行分类,常见的无监督学习算法有自编码器、生成对抗网络等。半监督学习:给一小部分有标注数
- 人工智能学习第一篇(tensorflow笔记)
& Pumbaa
tensorflow
本文是在学习北大课程“人工智能实践:tensorflow笔记”的基础上,自己做的笔记,用于温故知新。张量(Tensor):多维数组(列表)阶:张量的维数(从0开始)张量可以表示0阶到n阶数组(列表)eg1:importtensorflowastfa=tf.constant([1,5],dtype=tf.int64)print(a)print(a.dtype)print(a.shape)结果:tf.
- 神经网络学习笔记——鸢尾花分类
XL_0502
神经网络学习笔记神经网络tensorflow
TensorFlow笔记——鸢尾花分类代码笔记记录实验流程和代码功能,附上关于所涉及到的tensorflow库中函数的解释实验流程数据集读入数据集乱序生成训练集和测试集(即x_train/y_train)数据类型转换配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网路中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss测试效果计算当前参数前向传播后的准
- 用tensorflow搭建全连接神经网络实现mnist数据集的识别
humuhumunukunukuapua
爱好machinelearningmnisttensorflow
说明:本代码来自于北京大学曹健老师的MOOC人工智能实践:Tensorflow笔记第五讲I前向传播网络搭建在mnist_forward.py中搭建两层全连接网络,这里面就是定义层数,节点数,激活函数这些。输入节点数目就是mnist数据集的图片28*28大小,用784行的向量作为输入。第一层y1=relu(x*w1+b1)其中y1为500行的向量。那么w1里面就有784*500个变量啦~~b1是50
- TensorFlow笔记_05——神经网络八股功能拓展
要什么自行车儿
#TensorFlow2.0tensorflow神经网络深度学习
目录5.神经网络八股功能拓展5.1自制数据集,解决本领域应用5.2数据增强,扩充数据集5.3断点续训,存取模型5.3.1读取保存模型5.4参数提取,把参数存入文本5.5acc/loss可视化,查看训练效果5.6应用程序,给图实物(手写数字识别)上一篇:TensorFlow笔记_04——八股搭建神经网络下一篇:敬请期待5.神经网络八股功能拓展5.1自制数据集,解决本领域应用defgenerateds
- TensorFlow笔记之:填充使用tf.sequence_mask()函数详细说明和应用场景
模糊包
TensorFlow
tf.sequence_mask()函数这个函数目前我主要用于数据填充时候使用。文章目录tf.sequence_mask()函数1.函数介绍2.参数解释要点解释:3.函数举例4.注意事项和应用场景1.函数介绍这个是官方定义,耐心看完解释再看后面的例子,你会一下就懂了。#函数定义sequence_mask(lengths,maxlen=None,dtype=tf.bool,name=None)#返回
- 小白笔记:深度学习之Tensorflow笔记(七:神经网络优化过程)
my小马
tensorflow深度学习神经网络tensorflow深度学习
激活函数激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。引入非线性激活函数,可使深层神经网络的表达能力更加强大。简化模型:MP模型:优秀的激活函数:•非线性:激活函数非线性时,多层神经网络可逼近所有函数•可微性:优化器大多用梯度下降更新参数•单调性:当激活函数是单调的,能保证单层网络的损失函数是凸函数•近似恒等性:f(x)≈x当参数初始化为随机小值时,神经网络更稳定激活函数输出值的范围
- 人工智能实践:Tensorflow笔记 Class 2:神经网络优化
By4te
机器学习Pythontensorflow人工智能神经网络
目录2.1基础知识2.2复杂度学习率1.复杂度2.学习率2.3激活函数1.sigmoid函数2.tanh函数3.relu函数4.leaky-relu函数2.4损失函数1.均方误差2.自定义损失函数3.交叉熵损失函数4.softmax与交叉熵结合2.5缓解过拟合正则化2.6优化器1.SGD2.SGDM3.Adagrad4.RMSProp5.Adam2.1基础知识2.2复杂度学习率1.复杂度2.学习率
- 《人工智能实践:Tensorflow笔记》听课笔记24_7.1卷积神经网络
RENeast
人工智能人工智能
附:课程链接第七讲.卷积神经网络7.1卷积神经网络由于个人使用Win7系统,并未完全按照课程所讲,以下记录的也基本是我的结合课程做的Windows系统+PyCharm操作。且本人有python基础,故一些操作可能简略。并未完全按照网课。记住编写代码时,除注释内容外,字符均使用英文格式。一、回顾及展开前两讲中我们利用全连接网络实现了对mnist数据集的训练,我们已学会使用数据集训练模型,并让训练好的
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST