- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- 关于CNN
御风之星
1.理解卷积神经网络中的通道channel2.手把手教你用TensorFlow实现卷积神经网络3.tensorflow笔记:多层CNN代码分析
- 2021-07-02
fisher-nuc
tensorflow神经网络
基于TensorFlow搭建的几种经典的卷积神经网络注:本文是本人一门课程的期末大作业,在学习曹建老师(人工智能实践:TensorFlow笔记)的课程时记录的笔记。在进行整理后写的一篇小文章,具体详解可以在B站或者MOOC上搜索相关课程。课程网站:https://www.icourse163.org/learn/PKU-1002536002?tid=1003797005#/learn/announ
- (一)tensorflow笔记:Tensor数据类型
阿松丶
TensorFlow详细笔记tensorflowpython深度学习
常见的数据类型载体listnp.arraytf.tensorlist:可以存储不同数据类型,缺点不适合存储较大的数据,如图片np.array:解决同类型大数据数据的载体,方便数据运算,缺点是在深度学习之前就设计好的,不支持GPUtf.tensor:更适合深度学习,支持GPUTensor是什么scalar:1.1vector:[1.1],[1.1,2.2,……]matrix:[[1,2,3,],[4
- tensorflow笔记(编程理论部分)
orangehsc
tensorflowpython矩阵算法
TensorFlow笔记(编程理论部分)注:该笔记是阅读TensorFlow深度学习算法原理与编程实战第三章后做的框架梳理和部分个人见解。Tensorflow之名由Tensor和Flow组成,Tensor意为张量,可以理解为数组;Flow意为流动,指张量数据沿着边在不同的节点间流动并发生转化。1.1计算图TensorFlow中的各种操作,如加权求和,激活函数等,都被编排成一个图,称为计算图。计算图
- tensorflow笔记
_夏雨潇潇
#tensorflow笔记一个小例子#用numpy构造数据x_data=np.random.rand(100).astype(np.float32)y_data=x_data*0.1+0.3#tf.Variable定义了一个变量,random_uniform表示用随机的方式生成变量的初始值#1表示这个变量是一维的,变量的初始范围是-1到1Weights=tf.Variable(tf.random_
- TensorFlow笔记之卷积神经网络
Mr_Stutter
Python机器学习cnntensorflow深度学习
文章目录前言一、卷积神经网络CNN二、Tensorflow1.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化二、Tensorflow2.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化总结前言记录在tf1.x与tf2.x中使用卷积神经网络完成CIFAR-10数据集识别多分类任务,并进行断点续训。一、卷积神经网络CNN1、全连接网络:参数增多,速度减慢,过拟合2
- tensorflow笔记----3---ANN对mnist数据集分类
骑着蜗牛逛世界
tensorflow
tensorfllow实现两层MLP对mnist分类,第一层256个神经元,第二层128个神经元,输入784,输出10分类#!/usr/bin/python#-*-coding:utf-8-*-__author__="chunming"importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_datamnist=i
- Tensorflow笔记 3.3 反向传播
CCWUCMCTS
概念反向传播训练模型参数,在所有参数上使用梯度下降,使NN模型在训练数据上的损失函数最小。损失函数预测值与已知答案的差距。均方误差loss=tf.reduce_mean(tf.square(y_-y))反向传播的训练方法三种方式,见代码。学习率参数更新幅度。实战loss#coding:utf-8#0导入模块,生成模拟数据集。importtensorflowastfimportnumpyasnpBA
- DL with python(16)——tensorflow实现InceptionNet(GoogLeNet)
佟湘玉滴玉
Python深度学习深度学习python
本文涉及到的是中国大学慕课《人工智能实践:Tensorflow笔记》第五讲第14节的内容,对tensorflow环境下经典卷积神经网络的搭建进行介绍,其基础是DLwithpython(14)——tensorflow实现CNN的“八股”中的代码,将其中第三步的代码替换为本文中的代码均可直接运行,其他部分无需改变。经典的卷积神经网络有以下几种,这里介绍结构较为复杂的InceptionNet,其实现的方
- [tensorflow笔记]-tensorflow实现带mask的reduce_mean
黄然大悟
Tensorflow&Kerastensorflowreduce_meanmask平均
在使用tensorflow处理一些tensor时,有时需要对一个tensor取平均,可以使用tf.reduce_mean操作,但是这个没法处理带有mask的tensor数据,本文主要就是利用tensorflow的基本操作实现带mask的平均。tf.reduce_mean比如我们的数据是3维tensor,shape=(B,N,H),B表示batch_size、N表示最大长度、H表示向量维度,这样的3
- 学习tensorflow笔记1、梯度计算
weixin_51298826
tensorflow学习笔记tensorflowpython深度学习
1、梯度计算学习北京大学的mooc,记录笔记代码块:生成一个变量w初值为5,设定为可训练学习率lr大小会影响梯度下降的速度和步幅迭代次数epochimporttensorflowastfimportmatplotlib.pyplotaspltw=tf.Variable(tf.constant(5,dtype=tf.float32))lr=0.9epoch=40plt_show=[]forepoch
- Tensorflow笔记——tf.layers.dense的用法
·城府、
深度学习神经网络
1.tf.layers.dense的用法dense:相当于一个全连接层函数解释如下:tf.layers.dense(inputs,units,activation=None,use_bias=True,kernel_initializer=None,bias_initializer=tf.zeros_initializer(),kernel_regularizer=None,bias_regula
- TensorFlow笔记之神经网络完成多分类任务
Mr_Stutter
Python机器学习tensorflow神经网络分类
文章目录前言一、数据集调用二、Tensorflow1.x1.单隐藏层2.模型保存与调用三、Tensorflow2.x1.全连接层类2.keras建模总结前言对TensorFlow笔记之单神经元完成多分类任务进行修改,在tf1.x与tf2.x中使用神经网络完成手写体数字识别多分类任务。一、数据集调用数据集调用与预处理和上一篇完全相同#数据集调用,在tensorflow2.x中调用数据集importt
- TensorFlow2安装(超详细步骤-人工智能实践)
不唐
Python深度学习TensorFlowtensorflow深度学习python
TensorFlow2安装教程1前言1.1版本记录1.2工具简介2详细步骤及安装语句2.1安装Anaconda2.2TensoFlow安装2.3验证是否成功2.4PyCharm下载与安装2.5PyCharm环境配置2.5.1不唐初尝试1前言点滴进步,加油!最近在MOOC看北京大学的曹健老师的《人工智能实践:Tensorflow笔记》课程。其中第一章的第8节提到了详细的TensorFlow安装过程。
- tensorflow笔记(十九)——错误集锦
starxhong
tensorflowtensorflow深度学习错误
错误及应对方案1,问题:训练正常,预测和评估的时候报OOM:办法:减少预测和训练的batchsize,或者减少网络参数。参考:ResourceExhaustedError(seeabovefortraceback):OOMwhenallocatingtensorofshape[7744,512]#33932,问题:从dataset打印数据,报错OP_REQUIRESfailedatexample_
- InceptionNet与ResNet
九思Atopos
tensorflow笔记深度学习pythontensorflow
以下代码图片思路来源:北京大学Tensorflow笔记嗯,最近学了一下神经网络,并没有很难,主要是把代码背下来,然后掌握Tensorflow是怎么搭建网络的,Tensorflow是比pytorch好用的,我直接抄的代码里面,训练还要自己写循环,,而tensonflow直接调用fit函数即可和老师做了一下InceptionNet还有ResNet,ResNet主要是有一条path,由于维度不同需要使用
- TensorFlow笔记之多元线性回归
Mr_Stutter
Python机器学习tensorflow线性回归python
文章目录前言一、数据处理二、TensorFlow1.x1.定义模型2.训练模型3.结果可视化4.模型预测5.TensorBoard可视化三、TensorFlow2.x1.定义模型2.训练模型3.结果可视化4.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成多元线性回归的过程。一、数据处理在此使用波士顿房价数据集,包含506个样本,输入为12个房屋信息特征,输出为房
- TensorFlow笔记之单变量线性回归
Mr_Stutter
Python机器学习tensorflow线性回归
文章目录前言一、数据集生成二、TensorFlow1.x1.定义模型2.训练模型3.模型预测三、TensorFlow2.x1.定义模型2.训练模型3.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成单变量线性回归的过程。一、数据集生成生成带标准正态分布噪声的y=2x+1数据集importnumpyasnpimportmatplotlib.pyplotasplt#数
- Tensorflow笔记之【神经网络的初步搭建】
不理不理不理左卫门
机器学习Tensorflow
一、基本概念基于Tensorflow的神经网络用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重,得到模型。张量——多维数组参数——神经元线上的权重计算图——搭建神经网络的计算过程,只搭建不计算会话——执行计算图中的节点运算例:矩阵乘法importtensorflowastf#引入模块x=tf.constant([[1.0,2.0]])#定义一个2阶1x2张量等于[[1.0,2
- TensorFlow笔记之单神经元完成多分类任务
Mr_Stutter
Python机器学习tensorflow分类
文章目录前言一、逻辑回归1.二分类问题2.多分类问题二、数据集调用三、TensorFlow1.x1.定义模型2.训练模型3.结果可视化四、TensorFlow2.x1.定义模型2.训练模型3.结果可视化总结前言记录分别在TensorFlow1.x与TensorFlow2.x中使用单神经元完成MNIST手写数字识别的过程。一、逻辑回归将回归值映射为各分类的概率1.二分类问题1.sigmod函数:y=
- 1TensorFlow笔记——基础概念简介&Python简明教程
weixin_45165961
pythontensorflow
0.1人工智能让机器看起来跟人一样,目前处于弱人工智能NarrowAI,距离强人工智能GeneralAI还有很大一段路要走。0.1.1机器学习让计算机自动学习,获得规律(模型),用新规律预测。0.1.2分类有监督学习:给带结果的数据进行训练,线性回归、逻辑回归、支持向量机、随机森林等。无监督学习:给数据,找规律进行分类,常见的无监督学习算法有自编码器、生成对抗网络等。半监督学习:给一小部分有标注数
- 人工智能学习第一篇(tensorflow笔记)
& Pumbaa
tensorflow
本文是在学习北大课程“人工智能实践:tensorflow笔记”的基础上,自己做的笔记,用于温故知新。张量(Tensor):多维数组(列表)阶:张量的维数(从0开始)张量可以表示0阶到n阶数组(列表)eg1:importtensorflowastfa=tf.constant([1,5],dtype=tf.int64)print(a)print(a.dtype)print(a.shape)结果:tf.
- 神经网络学习笔记——鸢尾花分类
XL_0502
神经网络学习笔记神经网络tensorflow
TensorFlow笔记——鸢尾花分类代码笔记记录实验流程和代码功能,附上关于所涉及到的tensorflow库中函数的解释实验流程数据集读入数据集乱序生成训练集和测试集(即x_train/y_train)数据类型转换配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网路中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss测试效果计算当前参数前向传播后的准
- 用tensorflow搭建全连接神经网络实现mnist数据集的识别
humuhumunukunukuapua
爱好machinelearningmnisttensorflow
说明:本代码来自于北京大学曹健老师的MOOC人工智能实践:Tensorflow笔记第五讲I前向传播网络搭建在mnist_forward.py中搭建两层全连接网络,这里面就是定义层数,节点数,激活函数这些。输入节点数目就是mnist数据集的图片28*28大小,用784行的向量作为输入。第一层y1=relu(x*w1+b1)其中y1为500行的向量。那么w1里面就有784*500个变量啦~~b1是50
- TensorFlow笔记_05——神经网络八股功能拓展
要什么自行车儿
#TensorFlow2.0tensorflow神经网络深度学习
目录5.神经网络八股功能拓展5.1自制数据集,解决本领域应用5.2数据增强,扩充数据集5.3断点续训,存取模型5.3.1读取保存模型5.4参数提取,把参数存入文本5.5acc/loss可视化,查看训练效果5.6应用程序,给图实物(手写数字识别)上一篇:TensorFlow笔记_04——八股搭建神经网络下一篇:敬请期待5.神经网络八股功能拓展5.1自制数据集,解决本领域应用defgenerateds
- TensorFlow笔记之:填充使用tf.sequence_mask()函数详细说明和应用场景
模糊包
TensorFlow
tf.sequence_mask()函数这个函数目前我主要用于数据填充时候使用。文章目录tf.sequence_mask()函数1.函数介绍2.参数解释要点解释:3.函数举例4.注意事项和应用场景1.函数介绍这个是官方定义,耐心看完解释再看后面的例子,你会一下就懂了。#函数定义sequence_mask(lengths,maxlen=None,dtype=tf.bool,name=None)#返回
- 小白笔记:深度学习之Tensorflow笔记(七:神经网络优化过程)
my小马
tensorflow深度学习神经网络tensorflow深度学习
激活函数激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。引入非线性激活函数,可使深层神经网络的表达能力更加强大。简化模型:MP模型:优秀的激活函数:•非线性:激活函数非线性时,多层神经网络可逼近所有函数•可微性:优化器大多用梯度下降更新参数•单调性:当激活函数是单调的,能保证单层网络的损失函数是凸函数•近似恒等性:f(x)≈x当参数初始化为随机小值时,神经网络更稳定激活函数输出值的范围
- 人工智能实践:Tensorflow笔记 Class 2:神经网络优化
By4te
机器学习Pythontensorflow人工智能神经网络
目录2.1基础知识2.2复杂度学习率1.复杂度2.学习率2.3激活函数1.sigmoid函数2.tanh函数3.relu函数4.leaky-relu函数2.4损失函数1.均方误差2.自定义损失函数3.交叉熵损失函数4.softmax与交叉熵结合2.5缓解过拟合正则化2.6优化器1.SGD2.SGDM3.Adagrad4.RMSProp5.Adam2.1基础知识2.2复杂度学习率1.复杂度2.学习率
- 《人工智能实践:Tensorflow笔记》听课笔记24_7.1卷积神经网络
RENeast
人工智能人工智能
附:课程链接第七讲.卷积神经网络7.1卷积神经网络由于个人使用Win7系统,并未完全按照课程所讲,以下记录的也基本是我的结合课程做的Windows系统+PyCharm操作。且本人有python基础,故一些操作可能简略。并未完全按照网课。记住编写代码时,除注释内容外,字符均使用英文格式。一、回顾及展开前两讲中我们利用全连接网络实现了对mnist数据集的训练,我们已学会使用数据集训练模型,并让训练好的
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc