- sentence-bert_pytorch语义文本相似度算法模型
技术瘾君子1573
bertpytorch人工智能语义文本相似度模型
目录Sentence-BERT论文模型结构算法原理环境配置Docker(方法一)Dockerfile(方法二)Anaconda(方法三)数据集训练单机多卡单机单卡推理result精度应用场景算法类别热点应用行业源码仓库及问题反馈参考资料Sentence-BERT论文Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networkshttps://ar
- 数据库面试题-ElasticSearch
@Corgi
Java面试题数据库elasticsearch大数据java面试题
数据库面试题-ElasticSearch1、ElasticSearch是什么?2、谈谈ElasticSearch分词与倒排索引的原理?3、说说ElasticSearch分段存储的思想?4、说说你对ElasticSearch段合并的策略思想的认识?5、知道什么是文本相似度TF-IDF吗?6、说说ElasticSearch写索引的逻辑?7、说说ElasticSearch集群中搜索数据的过程?8、说说E
- 【简单文本相似度分析】( LCS | Trie | DP | 词频统计 | hash | 单词分割 )
XNB's Not a Beginner
算法哈希算法算法c++数据结构链表hashtable
两个文本的相似度的指标有很多,常见的有词袋分析,词向量余弦,LCS(子串,子序列),Jaccard相似度分析(单词集合的对称差和最小全集比值),编辑距离等等我在自己的程序里只定义两个指标:1单词重复度2最长公共子序列长度首先用c++builtin的字符输入流对象istringstream做单词分割然后用我自己写的patriacatrie树当作词袋,把词量小的string做映射集合(类似重链合并),
- NLP_Bag-Of-Words(词袋模型)
you_are_my_sunshine*
NLP自然语言处理人工智能
文章目录词袋模型用词袋模型计算文本相似度1.构建实验语料库2.给句子分词3.创建词汇表4.生成词袋表示5.计算余弦相似度6.可视化余弦相似度词袋模型小结词袋模型词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示用词袋模型计算文本相似度1.构建实验语料库#构建一个数据集corpus=["我
- 如何利用大模型结合文本语义实现文本相似度分析?
小小晓晓阳
LLM文心一言pythonnlp
常规的文本相似度计算有TF-IDF,Simhash、编辑距离等方式,但是常规的文本相似度计算方式仅仅能对文本表面相似度进行分析计算,并不能结合语义分析,而如果使用机器学习、深度学习的方式费时费力,效果也不一定能达到我们满意的状态,随着大模型技术的日渐成熟,我们是否可以利用大模型来完成文本相似度分析呢?本文将结合文心一言4.0来介绍两种文本相似度分析的方法:方式一提供prompt,直接调用大模型接口
- bert+np.memap+faiss文本相似度匹配 topN
木下瞳
NLP机器学习深度学习模型bertfaiss人工智能
目录任务代码结果说明任务使用bert-base-chinese预训练模型将文本数据向量化后,使用np.memap进行保存,再使用faiss进行相似度匹配出每个文本与它最相似的topN此篇文章使用了地址数据,目的是为了跑通这个流程,数据可以自己构建模型下载:bert预训练模型下载-CSDN博客np.memap:是NumPy库中的一种内存映射文件(Memory-MappedFile)对象,它允许你将硬
- 基于BERT模型实现文本相似度计算
伪_装
自然语言处理深度学习bert深度学习自然语言
配置所需的包!pipinstalltransformers==2.10.0-ihttps://pypi.tuna.tsinghua.edu.cn/simple!pipinstallHanziConv-ihttps://pypi.tuna.tsinghua.edu.cn/simple数据预处理#-*-coding:utf-8-*-fromtorch.utils.dataimportDatasetfr
- 剖析Elasticsearch面试题:分词、倒排索引、文本相似度TF-IDF,揭秘分段存储与段合并,解密写索引技巧,应对深翻页问题的实用解决方案!
LiuSirzz
elasticsearch分布式大数据面试
1、谈谈分词与倒排索引的原理当谈到Elasticsearch时,分词与倒排索引是两个关键的概念,理解它们对于面试中展示对Elasticsearch工作原理的理解至关重要。「1.分词(Tokenization):」分词是将文本分解成一个个单独的词汇单元的过程。在Elasticsearch中,分词是搜索引擎索引和查询的基础。以下是一些关键点:分词器(Tokenizer):Elasticsearch使用
- bert提取词向量比较两文本相似度
木下瞳
NLP机器学习深度学习模型bert深度学习人工智能
使用bert-base-chinese预训练模型做词嵌入(文本转向量)模型下载:bert预训练模型下载-CSDN博客参考文章:使用bert提取词向量下面这段代码是一个传入句子转为词向量的函数fromtransformersimportBertTokenizer,BertModelimporttorch#加载中文BERT模型和分词器model_name="../bert-base-chinese"t
- 文本相似度计算
Logan_addoil
python大数据学习之旅python
相似度度量:计算个体间相似度相似度值越小,距离越大,相似度越大,距离越小余弦相似度:一个向量空间中两个向量夹角的余弦值作为衡量两个个体之间差异的大小余弦值接近1,夹角趋于0,表明两个向量越相似例如:文本相似度计算1.找出两篇文章的关键词2.每篇文章各取出若干关键词,合并成一个集合,计算每篇文章对于这个词的词频3.生成两篇文章各自的词频向量4.计算两个向量的余弦相似度,值越大就表示越相似import
- 全能相似度计算与语义匹配搜索工具包,多维度实现多种算法,涵盖文本、图像等领域。支持文图搜索,满足您在不同场景下的搜索需求
代码讲故事
机器人智慧之心算法图搜索算法相似度语义匹配图文搜索图像搜索
全能相似度计算与语义匹配搜索工具包,多维度实现多种算法,涵盖文本、图像等领域。支持文图搜索,满足您在不同场景下的搜索需求。Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索Similarities相似度计算、语义匹配搜索工具包,实现了多种相似度计算、匹配搜索算法,支持文本、图像等。文本相似度计算(文本匹配)余弦相
- OpenAI ChatGPT-4开发笔记2024-07:Embedding之Text Similarity文本相似度
aiXpert
笔记embedding
语义相似性semanticsimilarity背景结果背景OpenAIhasmadewavesonlinewithitsinnovativeembeddingandtranscriptionmodels,leadingtobreakthroughsinNLPandspeechrecognition.Thesemodelsenhanceaccuracy,efficiency,andflexibili
- 自然语言处理-文本对分类或回归
白云如幻
PyTorch深度学习代码笔记自然语言处理人工智能回归
我们研究了自然语言推断。它属于文本对分类,这是一种对文本进行分类的应用类型。以一对文本作为输入但输出连续值,语义文本相似度是一个流行的“文本对回归”任务。这项任务评估句子的语义相似度。例如,在语义文本相似度基准数据集(SemanticTextualSimilarityBenchmark)中,句子对的相似度得分是从0(无语义重叠)到5(语义等价)的分数区间。我们的目标是预测这些分数。来自语义文本相似
- 文本相似度计算(一):距离方法
Jarkata
文本相似度距离方法1、文本的表示1.1、VSM表示1.2、词向量表示1.3、迁移方法2、距离计算方法2.1、欧氏距离(L2范数)、曼哈顿距离(L1范数)、明氏距离2.2、汉明距离2.3、Jaccard相似系数、Jaccard距离(1-Jaccard相似系数)2.4、余弦距离2.5、皮尔森相关系数2.5、编辑距离场景举例:1)计算Query和文档的相关度、2)问答系统中计算问题和答案的相似度、3)广
- ai写作论文查重率高不高,选对AI写作很重要
bigfish5135
aiAI写作
AI写作的查重率取决于多个因素,包括所使用的AI模型的质量、训练数据的质量和多样性、文本相似度算法的准确性等等。在理想情况下,高质量的AI写作模型应该能够生成与现有文献不同的原创内容,从而降低论文的查重率。然而,由于AI模型的训练数据通常是从互联网上收集的大量文本中提取的,因此可能存在与现有文献相似的片段。这可能导致生成的论文在查重软件中显示高相似度,尽管实际上它们是由AI生成的原创内容。为了降低
- 贪心项目:搭建simple问答系统
AI量化小木屋
自然语言处理
本次项目的目标是搭建一个基于检索式的简单的问答系统。至于什么是检索式的问答系统请参考课程直播内容/PPT介绍。通过此项目,你将会有机会掌握以下几个知识点:字符串操作2.文本预处理技术(词过滤,标准化)3.文本的表示(tf-idf,word2vec)4.文本相似度计算5.文本高效检索此项目需要的数据:dev-v2.0.json:这个数据包含了问题和答案的pair,但是以JSON格式存在,需要编写pa
- java类库
巨子联盟
https://blog.csdn.net/dax1n/article/details/67040005Java内容差异比较库DiffatorDiffator是一个Java实现的双向的内容差异diff比较库,相似度范围0.0~1.0文本相似度算法java文件增量对比库sync4java[国产]java文件增量对比库。使用滚动算法对比两个文件的差异部分,最终计算出所有的差异值,将差异值与原始文件合并
- 余弦相似度算法
xwhking
算法
余弦相似度算法是什么余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。怎么用利用n维向量的计算公式我们知道二维余弦计算公式为:拓展至n维应用实例【下面举一个例子,来说明余弦计算文本相似度】举一个例子来说明,用上述理论计算文本的相似性。为了简单起见,先从句子着手。句子A:
- es检索之复合检索
小李飞刀李寻欢
Notebookelasticsearchpython大数据向量检索精准查询复合查询
背景:向量检索是文本相似度检索,现在增加新的字段进行过滤,如果以filter方式进行过滤,那么最终结果不保证有topK个,甚至一个都没有,因为它是先进行topK个向量召回,再进行filter。当然有人建议采用scriptScore方式进行检索,但此方式可能造成请求压力过大,内存消耗。scriptScore方式如下:POSTmy_index/_search{"size":2,"query":{"sc
- 基于ElasticSearch+文本相似度模型的检索式智能对话方案
chenxy02
NLP人工智能elasticsearch大数据bigdata
目录背景为什么只用ES相似度匹配不行解决同一意图不同表达的问题“粗筛”+“精选”的意图匹配方案另外一种思路:背景在对话系统领域,检索式对话系统一直是工业界的偏爱。而如何“检索”,或者说如何对用户query(输入的问题)进行意图匹配,则是能否做好检索式对话系统的关键所在。笔者曾经简单的基于ElasticSearch的相似度匹配进行过实现。后面又引入深度学习模型(详见:深度学习技术选型——文本相似度计
- ElasticSearch学习篇9_文本相似度计算方法现状以及基于改进的 Jaccard 算法代码实现
scl、
#ElasticSearchelasticsearch学习算法文本相似性改进Jaccard莱温斯坦距离
背景XOP亿级别题库的试题召回以及搜题的举一反三业务场景都涉及使用文本相似搜索技术,学习此方面技术以便更好的服务于业务场景。目前基于集合的Jaccard算法以及基于编辑距离的Levenshtein在计算文本相似度场景中有着各自的特点,为了优化具体的计算时间抖动超时问题,需要学习此方面知识,本文主要内容为文本相似度计算方法的现状、Jaccard、Levenshtein算法实现基本原理以及代码实现论文
- 文本聚类——文本相似度(聚类算法基本概念)
星宇星静
笔记聚类机器学习算法相似度笔记论文笔记
一、文本相似度1.度量指标:两个文本对象之间的相似度两个文本集合之间的相似度文本对象与集合之间的相似度2.样本间的相似度基于距离的度量:欧氏距离曼哈顿距离切比雪夫距离闵可夫斯基距离马氏距离杰卡德距离基于夹角余弦的度量公式:当文本进行了2-范数归一化,余弦相似度与内积相似度是等价的。距离度量衡量的是空间各个点的绝对距离,与各点的位置(即个体特征维度的数值)直接相关,而余弦相似度衡量的事空间向量的夹角
- 基于字面的文本相似度计算和匹配搜索
汀、人工智能
自然语言处理人工智能语义搜索相似度计算文本匹配检索系统关键词模型
搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源)专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源)前人栽树后人乘凉,本专栏提供资料:推荐系统算法库,包含推荐系统经典及最新算法讲解,以及涉及后续业务落地方案和码源本专栏
- STS语义文本相似度
腼腆小金鱼
机器学习深度学习人工智能
①基于TF-IDF的长文本相似度:(5条消息)基于Lucene、TF-IDF、余弦相似性实现长文本相似度检测_dmfrm的博客-CSDN博客②基于sentenceBert计算相似度:(5条消息)深度学习技术选型——文本相似度计算_文本相似度模型_chenxy02的博客-CSDN博客③基于Doc2vec的段落向量训练及文本相似度计算:(5条消息)基于Doc2vec的
- Transformers实战——文本相似度
aJupyter
python人工智能深度学习
文章目录一、改写文本分类1.导入相关包2.加载数据集3.划分数据集4.数据集预处理5.创建模型6.创建评估函数7.创建TrainingArguments8.创建Trainer9.模型训练10.模型评估11.模型预测二、交互/单塔模式1.导入相关包2.加载数据集3.划分数据集4.数据集预处理5.创建模型(区别)6.创建评估函数(区别)7.创建TrainingArguments8.创建Trainer9
- C语言两个文本相似度的算法,两个文本相似度算法实现和对比
Bearseason
C语言两个文本相似度的算法
背景最近做一个爬虫相关的项目,需要排除掉一些相似的链接,比如分页控件里上一页,下一页等等没什么用的链接.编辑距离算法编辑距离,又称Levenshtein距离(莱文斯坦距离也叫做EditDistance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。这个概念是由俄罗斯科学家V
- 文本相似度算法Jaccard相似度(杰卡德相似度)java实现
smx6666668
javajava
文本相似度算法杰卡德相似度,指的是文本A与文本B中交集的字数除以并集的字数,公式非常简单:java代码importjava.util.HashSet;importjava.util.Scanner;importjava.util.Set;publicclassStrJaccard{publicstaticvoidmain(String[]args){System.out.println("请输入两
- ML-文本相似度
yunpiao
局部敏感哈希(LSH)文本相识度计算文档文本相识度主要方法欧氏距离编辑距离余弦距离Jaccard距离距离越近相识度越高负比相识度公式公式文档的Shingling为了计算所以需要文档划分为小的短字符的集合即子串k-Shingling就是k个集合为一起的子串{"a,b","b,c"}k的选取视情况而定最小hash假设我们有这样4篇文档(分词后):s1="我减肥"s2="要"s3="他减肥成功"s4="
- 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
深度学习算法与自然语言处理
机器学习自然语言处理学习
文章目录1、自然语言处理概述技术提升2、自然语言处理入门基础2.1数学基础2.2语言学基础2.3Python基础2.4机器学习基础2.5深度学习基础2.6自然语言处理的理论基础3、自然语言处理的主要技术范畴3.1语义文本相似度分析3.2信息检索(InformationRetrieval,IR)3.3信息抽取(InformationExtraction)3.4文本分类(TextCategorizat
- Gensim库——文本处理和主题建模的强大工具
非著名程序员阿强
人工智能
在信息时代,海量的文本数据不断地涌现。如何从这如山如海的文本中提取有意义的信息,成为了一项关键任务。Python语言提供了许多优秀的库和工具来处理文本数据,其中一款备受推崇的工具就是Gensim库。Gensim是一个开源的Python库,它是构建主题模型和进行文本相似度计算的先进工具。本文将介绍Gensim库,解释其基本原理和功能,并通过实例演示如何使用Gensim库进行文本处理和主题建模。一、G
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_