- matlab cdf,Matlab 简单计算PDF和CDF | 学步园
苏晓晓
matlabcdf
通信的魅力就是在于随机性中蕴含的确定性,这也就是为什么你随便拿出一本通信方面的教材,前面几章都会大篇幅的讲解随机过程,随机过程也是研究生必须深入了解的一门课,特别是对于信号处理以及通信专业的学生。在实际工作中,通常会得到很多随机的数,我们要分析它们的分布,最常见的就是用PDF和CDF来描述了。好了,还是举出一个具体例子吧。那么实际中我们要验证是不是符合这样的分布,首先看代码再解释:%%%%%%%%
- 随机过程【张颢】第一章
模拟IC和AI的Learner
随机过程机器学习人工智能
学习目标随机过程主要研究多个随机变量之间的联系。主要分为两个大类:一,线性相关对线性相关的研究主要从以下方面:(1)从时域角度(2)从频域角度主要研究一个重要的过程:(3)高斯过程二,马尔可夫性主要学习:(1)离散时间的马尔可夫链(2)连续时间的马尔可夫链还会学习一个典型的过程(最简单、应用最广泛的马尔可夫过程):(3)泊松过程三,鞅(研究较少,主要用在金融方面)
- 随机信号是什么,随机信号的分类
cxylay
声音信号随机信号分类白噪声高斯非平稳
随机信号(RandomSignal)是指在时间或空间上,信号的取值是不可预测的,或者说是由随机过程所生成的信号。随机信号广泛存在于自然界中,例如大气噪声、电磁干扰、地震波等都可以被视为随机信号。随机信号的特点:①不可预测性:随机信号的未来取值无法通过确定性规律准确预测,只能通过统计特性来描述和估计。②统计特性描述:由于随机信号的瞬时值难以预测,因此我们通常通过统计特性,如均值、方差、自相关函数、功
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 【Stable Diffusion】:原理、应用与未来展望
Python小原
stablediffusion人工智能深度学习
一、引言在人工智能的快速发展中,StableDiffusion作为一种先进的随机过程模型,受到了广泛的关注。StableDiffusion不仅能够描述许多自然和人工系统中的随机演化行为,而且在多个领域展现出了广泛的应用潜力。本文将详细介绍StableDiffusion的原理、应用以及未来的发展趋势。二、StableDiffusion的原理StableDiffusion可以被定义为一个基于随机漫步的
- 随机过程及应用学习笔记(三)几种重要的随机过程
苦瓜汤补钙
学习笔记
介绍独立过程和独立增量过程。重点介绍两种独立增量过程-—维纳过程和泊松过程。目录前言一、独立过程和独立增量过程1、独立过程(IndependentProcess)2、独立增量过程(IndependentIncrementProcess)二、正态过程(高斯过程)1、正态过程的定义编辑2、正态过程的概率分布三、维纳过程(Brown运动)1、定义2、概率分布及数学特征3、性质四、泊松过程1、定义2、概率
- MATLAB实现几何布朗运动(模拟股价走势)
MATLAB代码顾问
matlab开发语言
问题描述:几何布朗运动(GeometricBrownianMotion,GBM)是一种常常用于模拟股票价格或汇率等金融资产价格的随机过程。MATLAB代码:clearall;clc;closeall;%设置参数T=1;%时间总长N=1000;%时间步数dt=T/N;%时间步长mu=0.1;%均值sigma=0.2;%标准差S0=100;%初始价格%初始化向量S=zeros(1,N);%价格t=ze
- 指数随机变量 泊松过程跳_随机过程学习笔记(1):指数分布与泊松过程
姐姐妹妹向前冲
指数随机变量泊松过程跳
笔记主要基于中文版《应用随机过程IntroductiontoProbabilityModels》(SheldonM.Ross),只有非常少的一部分是我自己的注解。写这个笔记的目的是自己复习用,阅读需要一定的微积分和概率论基础。本人为初学者,且全部为自学,如果笔记中有错误,欢迎指正。提示:概率论和指数分布作为本节的基础,我把一些重要公式写在开头,但是可以直接从泊松过程开始阅读,在泊松过程中用到相关知
- 应用随机过程期中复习总结
ldc1513
课程复习资料数学概率论应用随机过程马氏链常返
应用随机过程期中复习总结byldc前言:该笔记为北京大学数学科学学院应用随机过程课程的复习笔记和内容总结。主要参考课程讲义编写而成。该复习笔记截止期中,主要介绍了马氏链的概念,并且非常详细地讲解了时齐马氏链的各个性质。由于是总结性质的笔记,因此该总结中的结论不加证明地给出,如果需要查询证明的话可以参考以下两本书,也可以自行谷歌:英文:《MarkovChain》,Norris中文:《应用随机过程》,
- 随机过程学习笔记——概论
ReEchooo
随机过程
随机过程学习笔记——概论1.随机过程1.1基本概念1.2描述随机过程的方法2.随机过程的分类和举例3.随机过程的数字特征3.1均值(数学期望)3.2方差(二阶中心矩)3.3自相关函数(简称:相关函数)3.4自协方差函数(简称:协方差函数)4.两个或两个以上随机过程的联合分布和数字特征参考教材:陆大jin《随机过程及其应用》1.随机过程1.1基本概念随机过程是这样一个过程,它不能用一个时间t的确定性
- 随机过程及应用学习笔记(二)随机过程的基本概念
苦瓜汤补钙
学习笔记
随机过程论就是研究随时间变化的动态系统中随机现象的统计规律的一门数学学科。目录前言一、随机过程的定义及分类1、定义2、分类二、随机过程的分布及其数字特征1、分布函数2、数字特征均值函数和方差函数协方差函数和相关函数3、互协方差函数与互相关函数三、复随机过程总结前言随机过程理论产生于本世纪初,起源于统计物理学领域。布朗运动和热噪声是随机过程的最早例子。随机过程理论在社会科学、自然科学和工程技术的各个
- 随机过程及应用学习笔记(一)概率论(概要)
苦瓜汤补钙
学习笔记
概率是随机的基础,在【概率论(概要)】这个部分中仅记录学习随机过程及应用的基本定义和结果。前言首先,概率论研究的基础是概率空间。概率空间由一个样本空间和一个概率测度组成,样本空间包含了所有可能的结果,而概率测度则描述了每个结果发生的可能性大小。研究者通过定义适当的概率测度,可以更准确地描述各种随机现象的发生概率。一、概率空间(Ω,F,P)Samplespace样本空间:随机试验的所有可能结果构成的
- Smart seq2 2014
韧_7e6f
题目:Full-lengthRNA-seqfromsinglecellsusingSmart-seq2期刊:NatProtoc.通讯作者:RickardSandberg1.背景越来越明显的是,由于内在的随机过程和外部因素(如周围的微环境),体内或体外细胞培养中看似均匀的细胞群在表达模式上可以显示出相当大的异质性。需要单细胞分辨率来增加我们对细胞间变异性的理解。我们的团队最近证明了Smart-seq
- 问题汇总20240206——角度随机游走、字符与字节、SWaP、跨平台通讯问题、#park
老王WHH
问题汇总经验分享学习笔记嵌入式硬件
文章目录角度随机游走字符与字节SWaP跨平台通讯过程中必须考虑以下问题:#park指令角度随机游走1.角度随时间变化是随机过程,即角度在时间上的随机漂移降低:温度稳定、校准、误差补偿、数据滤波(卡尔曼)降低环境因素带来的干扰,例如振动或噪声。但总的来说不可能完全消除。字符与字节字符:字母、数字、文本、标点等。不同的标准下的字符与字节的换算是不同的:ASCII、UTF-8:1字符=1字节=8bits
- 通信基础 4——遍历容量、信道估计、干扰对齐
今天也努力学习的Paul
物理层安全
目录遍历容量/各态历经性容量信道估计干扰对齐无线携能通信遍历容量/各态历经性容量说遍历容量不十分准确,应该叫各态历经性容量(是相对于中断容量说的)首先要理解《信息论》中得香农信道容量,然后结合《随机过程》这门课的内容来理解。通常我们所说的香农容量是在确定性信道条件下得到的信道容量,是一个确定值。但实际上,信道状态是一个不断变化的随机过程,应该采用统计意义上的信道容量来描述。有两种统计意义上的描述方
- 做研究系列:如何研究量子科学
科学禅道
Research:做研究系列量子计算
研究量子科学通常需要经过系统的学术训练和实践探索,以下是入门和深入研究量子科学的一般步骤:基础知识学习:学习物理学基础,包括经典力学、电磁学、热力学与统计物理等。掌握数学工具,如线性代数、微积分、泛函分析、复变函数论以及概率论与随机过程等,这些是理解和构建量子理论模型的基础。量子力学入门:从基本的量子力学原理开始,如波粒二象性、薛定谔方程、不确定性原理、态叠加原理和测量问题等。阅读经典的教材,例如
- 【深度学习】马尔科夫链
weixin_40293999
深度学习深度学习人工智能
马尔科夫链一、常见的马尔可夫过程:(1)独立随机过程为马尔可夫过程。(2)独立增量过程为马尔可夫过程:没{X(t),t∈[0,+∞)}为一独立增量过程,且有P(X(0)=x0)=1,x0为常数,则X(t)为马尔可夫过程。(3)泊松过程为马尔可夫过程。(4)维纳过程为马尔可夫过程。(5)质点随机游动过程为马尔可夫过程。二、模型的创立条件importnumpyasnpdefmarkov():init_
- 泊松过程介绍
White__River
随机过程人工智能
泊松过程根据海上终端通信需求分布在时间和空间上的不均匀性,可以用泊松过程模拟这一过程.以下是泊松过程相关的理论知识.1.计数过程如果随机过程N(t)代表系统(从某一开始时刻)到t时刻这段时间内发生某个事件的次数,就称之为计数过程.根据其定义,计数过程的性质有:N(t)>=0N(t)的值是整数若s=0,有P{N(h+s)−N(s)=n}=e−λh(λh)nn!,n=0,1,...P\{N(h+s)-
- MUSIC算法原理与信号DOA估计
LiuXiaoli0720
算法线性代数矩阵信号处理
一、平稳随机过程的自相关矩阵及其性质1.1自相关矩阵的定义对离散时间平稳随即构成,用MMM个时刻的随机变量u(n),u(n−1),...,u(n−M+1)u(n),u(n-1),...,u(n-M+1)u(n),u(n−1),...,u(n−M+1)构造随机向量u(n)=[u(n),u(n−1),...,u(n−M+1)]Tu(n)=[u(n),u(n-1),...,u(n-M+1)]^{T}u(
- 专业140+总分420+复旦大学957信号与系统考研经验复旦电子信息与通信
一个通信老学姐
博睿泽信息通信考研论坛博睿泽信息通信考研考研信息与通信信号处理经验分享
今年专业957信号与系统140+,数二140+,总分420+,顺利上岸复旦大学,回顾这一年的复习,有起有落,也有过犹豫和放弃,好在都坚持下来了,希望大家考研复习要不忘初心,困难肯定是很多的,要坚持到底,不要怀疑自己,或者总觉得时间不够,想着二战。给自己松懈的理由。希望我的复习经验可以对大家复习有所帮助。专业课:957信号与系统(包含随机过程),复旦以前专业课考试内容较多,2022开始改为信号与系统
- BUPT果园物联大二下不完全回忆
本小爷世界第一花式帅
BUPT果园课程回忆录经验分享
随便写写,随写随更,主要我对不同课程的记忆点(主要是专业课)北邮国院物联网工程专业大二下学期课程记录I.必修课:1.数字电路与逻辑设计2.Java高级语言程序设计3.数据库4.概率论与随机过程5.产品开发与管理6.Design&Build实训37.学术交流技能28.MAOGAI9.MAOGAI(实践环节)10.XINGZHENG411.个人发展计划IIII.选修课:1.人文与医学(在线课程)2.区
- 2019-11-07
LiuLiuLu
随机过程的学习已经接近尾声了。我觉得该写点什么记录一下了。最初决定学习随机过程的原因是多方面的。一方面是想在信号处理这个方向深耕,随机过程是处理随机信号最重要的数学工具,想深入学习统计信号处理必须学习随机过程。另一方面,随机数学本身便充满了魅力。我选取的教材是中科大出版社出版的《随机过程引论》。坦白说,这不是一本好教材。不过和其他中科大出版的教材类似,它非常注重数学基础。该书的第一章以测度论为基础
- 【课程复习-01】国科大-随机过程知识点精简版
lzl2040
我的笔记随机过程国科大期末
国科大-随机过程知识点精简版目录国科大-随机过程知识点精简版前言随机过程及其分类常见分布的概率密度和分布0-1分布二项分布泊松分布几何分布均匀分布指数分布正态分布随机过程的两种描述方式例题随机过程X(t)的数字性质单个随机过程两个随机过程随机过程的分类方式参数集和状态空间的特性统计特征或概率特征随机过程独立条件数学期望马尔可夫过程马尔可夫链定义C-K方程m步转移概率C-K方程马尔可夫链状态的分类到
- 深度CV基础——图像噪声和滤波
徐kun按门铃
智能车笔记python深度学习opencv机器学习
一,图像噪声1.图像噪声的概念:图像噪声是图像在获取或是传输过程中受到随机信号干扰,妨碍人们对图像理解及分析处理的信号。很多时候将图像噪声看做多维随机过程,因而描述噪声的方法完全可以借用随机过程的描述,也就是使用随机过程的描述,也就是用它的高斯分布函数和概率密度分布函数。图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道受到了噪声的
- .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)
十年一梦实验室
机器学习人工智能
概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图模型可以用于机器学习,人工智能,自然语言处理,计算机视觉,生物信息学等领域。一、马尔科夫模型随机过程马尔科夫过程马尔科夫链状态转移矩阵通过训练样本学习得到,采
- Python蒙特卡洛相关变量SciPy模拟
亚图跨际
交叉知识python蒙特卡洛scipy
SciPy的概率分布和分布拟合简述:概率分布对随机过程进行建模并将其拟合到观测数据。SciPy的概率分布、它们的属性和方法。通过拟合Weibull极值分布来模拟组件寿命的示例。一个自动化的拟合程序,从大约60个候选分布中选择最好的。SciPy中提供了123个分布:dist_continu=[dfordindir(stats)ifisinstance(getattr(stats,d),stats.r
- 随机过程——卡尔曼滤波学习笔记
m0_46521579
算法
一、均方预测和随机序列分解考虑随机序列使用预测定义称为的均方可预测部分。若相互独立,则是均方不可预测的。定义随机序列的新息序列V(k)基于样本观测的条件均值为0,即均方不可预测。V(k)与是正交的,即。二、卡尔曼滤波输入观测量,对进行估计得到1.系统模型状态方程观测方程其中,:状态向量,:观测向量,:状态噪声,,高斯白噪声:观测噪声,,高斯白噪声:状态转移矩阵,:观测矩阵,相关性质:(1)乘积率:
- 提笔惊鸿的小时光
星辰儿sy
阳光正好,微风不燥,很nice的天气~洗完头发,搬把小椅子坐在阳台上,阳光撒下来,世界都明亮了呢。早上睡到自然醒,上了一节应用随机过程,老师说起上次交的作业,说有一个同学文件名格式不对,别人都是word版,就那个同学是什么mdf版的,我心想谁这么傻。然后他就说学号尾号是214的,是个女生。我的妈妈耶,这不是我吗...我默默举起了手,场面一度陷入尴尬,结果老师说就记住你的学号了,情人节嘛。嘻嘻,好吧
- 马尔可夫算法及其实例(预测类模型)
爱静的龙猫
算法
马尔科夫预测模型是一种基于马尔科夫过程的预测方法。马尔科夫过程是一类具有马尔科夫性质的随机过程,即未来的状态只依赖于当前状态,而与过去状态无关。这种过程通常用状态空间和状态转移概率矩阵来描述。在马尔科夫预测模型中,系统被建模为处于一系列离散状态之一的马尔科夫链。每个状态表示系统可能的一个状态或情境,状态之间的转移由概率矩阵定义。这个概率矩阵描述了系统从一个状态转移到另一个状态的可能性。后无效性,马
- 频率域滤波图像复原的python实现——数字图像处理
筱筱西雨
图像处理python开发语言深度学习opencv图像处理
原理维纳滤波的原理是基于统计方法,旨在通过最小化信号的估计误差来改善信号的质量。它在处理具有噪声干扰的信号时特别有效。维纳滤波旨在从受噪声干扰的信号中恢复原始信号。它假设信号和噪声都是随机过程,并且它们的统计特性是已知的或可估计的。维纳滤波器的设计基于最小化输出和所需信号之间的均方误差(MSE)。数学原理假设x(n)是原始信号,d(n)是观测到的受噪声干扰的信号,y(n)是滤波器的输出。那么,噪声
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一