走迷宫问题(深度优先遍历 + 广度优先遍历)

迷宫是许多小方格构成的矩形,在每个小方格中有的是墙(用1表示),有的是路(用0表示)。走迷宫就是从一个小方格沿上、下、左、右四个方向到邻近的方格,当然不能穿墙。设迷宫的入口是在左上角(1,1),出口是在右下角(8,8)。根据给定的迷宫,找出一条从入口到出口的路径。

解法一(深度优先遍历,打印所有可行的路径):

#include 
using namespace std;

int maze[8][8] = {{0,0,0,0,0,0,0,0},{0,1,1,1,1,0,1,0},{0,0,0,0,1,0,1,0},{0,1,0,0,0,0,1,0},
{0,1,0,1,1,0,1,0},{0,1,0,0,0,0,1,1},{0,1,0,0,1,0,0,0},{0,1,1,1,1,1,1,0}};
//下、右、上、左
const int fx[4] = {1,0,-1,0};
const int fy[4] = {0,1,0,-1};
//maze[i][j] = 3;//标识已走
//maze[i][j] = 2;//标识死胡同
//maze[i][j] = 1;//标识墙
//maze[i][j] = 0;//标识可以走

//打印路径
void printPath()
{
    for (int i=0;i<8;++i)
    {
        for (int j=0;j<8;++j)
        {
            if (3 == maze[i][j])
            {
                cout<<"V";
            }
            else
            {
                cout<<"*";
            }
        }
        cout<
    }
    cout<
}

void search(int i, int j)
{
    int newx;
    int newy;
    for (int k=0;k<4;++k)
    {
        newx = i+fx[k];
        newy = j+fy[k];
        //如果不是墙,且没有走过
        if (newx>=0 && newx <8 && newy>=0 && newy<8 && 0 == maze[newx][newy])
        {
            maze[newx][newy] = 3;
            if (7 == newx && 7 == newy)
            {
                printPath();
                maze[newx][newy] = 0;
            }
            else
            {
                search(newx,newy);
            }       
        }
    }
    **//回溯的时候将此点标记未访问,这样下一条路径也可以访问**
    maze[i][j] = 0;
}

int main()
{
    maze[0][0] = 3;
    search(0,0);
    return 0;
}

运行结果:
走迷宫问题(深度优先遍历 + 广度优先遍历)_第1张图片

解法二(广度优先遍历):

#include 
#include 
using namespace std;

int maze[8][8] = {{0,0,0,0,0,0,0,0},{0,1,1,1,1,0,1,0},{0,0,0,0,1,0,1,0},{0,1,0,0,0,0,1,0},
{0,1,0,1,1,0,1,0},{0,1,0,0,0,0,1,1},{0,1,0,0,1,0,0,0},{0,1,1,1,1,1,1,0}};
//下、右、上、左
const int fx[4] = {1,0,-1,0};
const int fy[4] = {0,1,0,-1};

struct sq{
    int x;
    int y;
    int pre;
};

//标记路径,正确的点值赋为3
void markPath(const vector &q, int index)
{
    sq tmp = q[index];
    maze[tmp.x][tmp.y] = 3;
    if ( 0 == tmp.x && 0 == tmp.y )
    {
        return ;
    }
    else
    {
        markPath(q, tmp.pre);
    }
}

//打印路径
void printPath()
{
    for (int i=0;i<8;++i)
    {
        for (int j=0;j<8;++j)
        {
            if (3 == maze[i][j])
            {
                cout<<"v";
            }
            else
            {
                cout<<"*";
            }
        }
        cout<cout<//检查点(i,j)是否满足
bool check(int i, int j)
{
    if (i >= 0 && i<8 && j>=0 && j<8 && 0 == maze[i][j])
    {
        return true;
    }
    return false;
}

void search()
{

    //模仿队列,之所以不用真正的队列,因为后面需要通过下标对队列进行随机访问
    vector q;
    int qh = 0;
    sq fnode;
    fnode.pre = -1;
    fnode.x = 0;
    fnode.y = 0;
    //标记已访问
    maze[fnode.x][fnode.y] = -1;
    q.push_back(fnode);
    int qe = 1;
    sq tmp;
    while (qh != qe)
    {
        //出队
        tmp = q[qh];
        ++qh;
        int newx, newy;
        for (int k=0;k<4;++k)
        {
            newx = tmp.x + fx[k];
            newy = tmp.y + fy[k];
            if (check(newx, newy))
            {
                sq n_node;
                n_node.pre = qh - 1;
                n_node.x = newx;
                n_node.y = newy;
                //入队
                q.push_back(n_node);
                ++qe;
                //找到出口,打印
                if (7 == newx && 7 == newy)
                {
                    markPath(q, qe-1);
                    printPath();
                    return;
                }
            }
        }
        //maze[tmp.x][tmp.y] = -1;
    }
}

int main()
{
    maze[0][0] = 3;
    search();
    return 0;
}

运行结果:
走迷宫问题(深度优先遍历 + 广度优先遍历)_第2张图片

你可能感兴趣的:(算法设计与分析)