- AWS Lambda与RDS连接优化之旅
t0_54manong
编程问题解决手册aws云计算个人开发
在云计算的时代,AWSLambda与RDS的结合为开发者提供了高效且灵活的解决方案。然而,在实际应用中,我们常常会遇到一些性能瓶颈。本文将通过一个真实案例,探讨如何优化AWSLambda与RDS之间的连接,以提高API的响应速度。背景介绍最近,我们在AWS上部署了一个使用Dotnet6开发的API,它通过APIGateway暴露给外部,并连接到同VPC内的MySQLAuroraRDS数据库。部署前
- VINS-Mono 开源项目安装与使用指南
劳丽娓Fern
VINS-Mono开源项目安装与使用指南VINS-Mono项目地址:https://gitcode.com/gh_mirrors/vi/VINS-MonoVINS-Mono是一个专为单目视觉惯性系统设计的实时SLAM框架,旨在提供高精度的视觉惯性里程计。本指南将带你深入了解其目录结构、启动文件以及配置文件,帮助你快速上手并应用此项目。目录结构及介绍VINS-Mono的项目结构清晰地组织了不同的组件
- AWS 监控和管理服务 CloudWatch
wumingxiaoyao
BigDataaws大数据云计算CloudWatch日志监控
AWS监控和管理服务CloudWatch什么是CloudWatchCloudWatch工作原理CloudWatchlog收集方法通过AWSLambda发送日志到CloudWatchLogs使用CloudWatchLogsAgent发送日志通过AWSSDK或API将日志发送到CloudWatchLogs通过CloudWatchAgent将应用和系统日志发送到CloudWatchLogsCloudWa
- PHP云原生与Serverless架构深度实践
seopthonshentong
云原生phpserverless
在前六篇系列教程的基础上,本文将深入探讨PHP在云原生和Serverless环境下的高级应用,帮助开发者构建可扩展、高可用的现代化PHP应用。1.ServerlessPHP架构Bref与AWSLambda集成bash#安装Brefcomposerrequirebref/brefphpartisanvendor:publish--tag=serverless-configserverless.yml
- ROS的学习链接整理 (基于古月居)
辣椒炒月饼
学习机器人自动驾驶
机器人控制与仿真:http://wiki.ros.org/roscontrol机器人即使定位与地图建模:http://wiki.ros.org/gmappinghttp://wiki.ros.org/hectorslam机械臂相关学习:http://moveit.ros.org/斯坦福大学公开课———机器人学:https://www.bilibili.com/video/av4506104/交通大
- (02)Cartographer源码无死角解析-(72) 2D后端优化→OptimizationProblem2D-约束残差、landmark残差
江南才尽,年少无知!
机器人cartographerslam自动驾驶增强现实
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下:(02)Cartographer源码无死角解析-(00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→
- cartographer官方指导文件说明---第3章 cartographer前端算法流程介绍
从小练武功
前端算法
cartographer官方指导文件说明第3章cartographer前端算法流程介绍3.1ScanMatch扫描匹配扫描匹配(ScanMatching)是Cartographer中实现局部SLAM的核心技术,它通过优化算法将当前激光扫描数据对齐到子图地图中。下面从计算过程、数学模型、参数配置等多个维度进行全面解析:3.1.1扫描匹配工作流程完整处理流程低置信度高置信度原始扫描数据运动畸变校正体素
- 3.3 里程计在SLAM中的应用
小慧1024
ROS1快速入门指南ros机器人linux
启动仿真环境roslaunchwpr_simulationwpb_corridor_hector.launch可视化结果如图所示在Riz建图中存在问题换一种方式建图roslaunchwpr_simulationwpb_corridor_gmapping.launch由于历程计的参与,地图被顺利建成
- SLAM面试笔记(5) — ROS面试
几度春风里
SLAM项目实战面试机器人ros自动驾驶
目录1ROS概述2ROS通信机制问题:服务通信概念问题:服务通信理论模型问题:参数服务器概念问题:参数服务器理论模型问题:参数服务器实现函数3ROS常用命令4常见面试题问题:roslaunch和rosrun区别?问题:什么是ROS?问题:ROS中的节点是什么?问题:ROS的消息通信机制是什么?问题:如何创建ROS的工作空间?问题:ROS中常用的机器人控制库有哪些?问题:ROS中如何进行机器人导航?
- nerf-slam论文复现
搬砖者(视觉算法工程师)
gitpython深度学习
nerf-slam实现三维重建详细的在我文档里面(有图片步骤)TableofContentsInstallDownloadDatasetsRunCitationLicenseAcknowledgmentsContactInstallClonerepowithsubmodules:gitclonehttps://github.com/ToniRV/NeRF-SLAM.git--recurse-sub
- STM32和树莓派的分工
⚙️修正版:典型硬件组合与通信流程(以移动机器人为例)1.硬件分工:大脑vs四肢角色硬件运行软件核心任务是否直接运行ROS决策大脑树莓派4B/JetsonNanoUbuntu+ROS运行SLAM、导航、视觉识别等复杂算法✅是实时四肢STM32F4FreeRTOS/裸机读取电机编码器、控制电机PWM❌否传感器/执行器电机、激光雷达、IMU-执行动作/采集数据-2.为什么需要STM32?树莓派无法直接
- 第5.4章 SLAM实战:使用std::chrono计算传感器消息时间戳
行知SLAM
机器人工程师带你入门SLAMunixc++自动驾驶人工智能
在机器人及自动驾驶定位中,传入的IMU和激光的消息都需要判断其数据的正确性,其中,主要会判断消息的开机时间和观测时间,其中开机时间主要通过调用chrono的函数计算,观测时间主要由GPS的时间来获得(GPS观测时间已由上篇文章总结GPS时间计算)。std::chrono是C++11引入的时间处理库,提供了高精度、类型安全且跨平台的时间计算功能。它主要包含三个核心概念:duration:表示时间间隔
- 《用Java 8新特性重构代码:让项目更简洁高效》
Tech_Jia_Hui
Java8新特性java重构开发语言
1.Lambda表达式:简化匿名内部类1.1传统方式vsLambda表达式1.2集合遍历对比1.3事件监听器简化2.StreamAPI:革命性的集合操作2.1基本Stream操作示例2.2数值流操作2.3分组和分区3.Optional:优雅处理null3.1基本Optional用法3.2Optional实践示例4.方法引用:更简洁的Lambda4.1四种方法引用类型4.2方法引用实践5.新的日期时
- 基于AWS无服务器架构的区块链API集成:零基础设施运维实践
AWS官方合作商
awsserverless架构web3区块链
引言区块链开发常面临节点部署、网络维护和扩展性挑战。本文将介绍如何通过AWS全托管服务构建高可用的区块链API层,无需自建节点、无需管理服务器,实现快速接入主流区块链网络(如以太坊、比特币),并保证企业级安全性与扩展性。graphLRA[前端应用]-->B[AmazonAPIGateway]B-->C[AWSLambda]C-->D[AmazonManagedBlockchain]C-->E[Bl
- 【SLAM】基于拓展卡尔曼滤波实现激光雷达传感器和角点提取的机器人定位附matlab代码
matlab科研社
机器人matlab数据结构
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍自主移动机器人定位是机器人学研究的核心问题之一。本文探讨了基于拓展卡尔曼滤波(EKF)融合激光雷达传感器数据和角点提取技术实现机器人定位的方法。通过深入分析激光雷达传感器的工
- 【ROS2】slam_toolbox建图详解
郭老二
ROSROS2SLAM
【ROS】郭老二博文之:ROS目录1、简介1)安装sudoaptinstallros-$ROS_DISTRO-slam-toolbox2)源码https://github.com/SteveMacenski/slam_toolbox3)官网https://joss.theoj.org/papers/10.21105/joss.027832、启动2.1启动slam_toolboxslam_toolb
- Python中日志输出配置
亚林瓜子
python开发语言logawslambdacloudwatchexception
问题在AWSlambdaPython中怎么样打印日志?Pythonimportlogginglogging.basicConfig()logging.getLogger("sqlalchemy.engine").setLevel(logging.INFO)logger=logging.getLogger()logger.setLevel(logging.INFO)上面是全局配置主要是如下配置:lo
- 视觉slam--框架
猿饵块
人工智能
视觉里程计的框架传感器VO--frontendVO的缺点后端--backend后端对什么数据进行优化利用什么数据进行优化的后端是怎么进行优化的回环检测建图建图是指构建地图的过程。构建的地图是点云地图还是什么信息的地图?建图并没有一个固定的形式和算法,地图的构建形式不是固定的,需要视SLAM的应用需求而定。
- 视觉slam十四讲实践部分记录——ch2、ch3
kikikidult
slam学习slamc++笔记
ch2一、使用g++编译.cpp为可执行文件并运行(P30)g++helloSLAM.cpp./a.out运行二、使用cmake编译mkdirbuildcdbuildcmake..makeCMakeCache.txt文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的CMakeCache.txt文件,或者在构建过程中仍然引用了旧的路径。我们需要彻底清理并重新开始。详细解决步骤步骤1:彻底清理源
- 【2D与3D SLAM中的扫描匹配算法全面解析】
Unpredictable222
SLAM算法自动驾驶自主导航算法opencvpclSLAMICPNDT
引言扫描匹配(ScanMatching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3DSLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注激光雷达SLAM中的典型方法。一、扫描匹配数学基础与核心原理1.1刚体变换的数学表示扫描匹配的核心是求解刚体变换,在2D和3D空间中有不同的数学表示:
- cv::FileStorage用法
Feliz Da Vida
c++c++开发语言opencv
cv::FileStorage是OpenCV中的一个类,用于读取和写入结构化数据(如YAML、XML、JSON)。它非常适合保存和加载诸如:相机内参(K、D)位姿(R、T)IMU数据配置参数向量、矩阵、图像、列表等常见用途保存相机标定参数(标定后得到的.yml文件)配置文件读写(如SLAM、AR、CV项目)记录检测结果或轨迹数据使用示例✅1.写入YAML文件#includeusingnamespa
- 《视觉SLAM十四讲》自用笔记 第二讲:SLAM系统概述
BandieraRosa
slam笔记
在rm队伍里作为算法组梯队队员度过了一个赛季,为了促进和负责其他工作的算法组成员的交流,我决定在接下来的半个学期里(可能更快)读完这本书,并将其中的部分理论应用于我自制的雷达导航小车上。以下为第二讲的部分笔记:第二讲SLAM系统概述2.0目标1.理解一个视觉SLAM框架由哪几个模块组成,各模块的任务是什么。2.搭建编程环境,为开发和实验做准备2.1相机单目相机:只使用一个摄像头。无法通过单张照片获
- 【深度学习新浪潮】如何入门三维重建?
小米玄戒Andrew
深度学习新浪潮图像处理基石深度学习人工智能图像处理计算机视觉python视觉几何opencv
入门三维重建算法技术需要结合数学基础、计算机视觉理论、编程实践和项目经验,以下是系统的学习路径和建议:一、基础知识储备1.数学基础线性代数:矩阵运算、向量空间、特征分解(用于相机矩阵、变换矩阵推导)。几何基础:三维几何(点、线、面的表示)、射影几何(单应矩阵、本质矩阵、基础矩阵)、李群与李代数(SLAM中的位姿优化)。概率与统计:贝叶斯估计、概率图模型(SLAM中的状态估计)、随机过程(滤波算法如
- Levenberg-Marquardt算法详解和C++代码示例
点云SLAM
算法算法非线性最小二乘问题高斯-牛顿法和梯度下降法LM算法数值优化计算机视觉SLAM后端优化
Levenberg-Marquardt(LM)算法是非线性最小二乘问题中常用的一种优化算法,它融合了高斯-牛顿法和梯度下降法的优点,在数值计算与SLAM、图像配准、机器学习等领域中应用广泛。一、Levenberg-Marquardt算法基本原理1.1问题定义我们希望最小化一个非线性残差平方和目标函数:minx f(x)=12∑i=1mri(x)2=12∥r(x)∥2\min_{\mathbf{x
- 基于Serverless架构的搜索引擎爬虫实现方案
搜索引擎技术
搜索引擎实战serverless架构搜索引擎ai
基于Serverless架构的搜索引擎爬虫实现方案关键词:Serverless架构、搜索引擎爬虫、无服务器计算、分布式爬虫、AWSLambda、事件驱动架构、网页抓取摘要:本文深入探讨了如何利用Serverless架构实现高效、可扩展的搜索引擎爬虫系统。我们将从传统爬虫的局限性出发,分析Serverless架构的优势,详细讲解基于事件驱动的爬虫设计原理,并提供完整的实现方案和代码示例。文章将覆盖核
- 推荐文章:Lambda Serverless Search - 构建低成本高效全文搜索引擎
赵鹰伟Meadow
推荐文章:LambdaServerlessSearch-构建低成本高效全文搜索引擎Lambda-Serverless-SearchUseAWSLambdatoperformfree-textsearchondocuments-WithSAMTemplate项目地址:https://gitcode.com/gh_mirrors/la/Lambda-Serverless-Search在当今快速发展的云
- 自动驾驶转具身智能的切入点有哪些?
自动驾驶之心
自动驾驶人工智能机器学习
这几天很多同学后台私信我们,自动驾驶如何转具身智能?会不会有比较大的gap。从算法维度上看,具身智能领域基本延续了机器人和自驾的一些算法,比如SLAM、规划控制、模型训练与微调方式、数据生成方式、大模型。当然也有很多具体的任务不太一样,比如数据采集方式、重执行硬件与结构。我们也创办了一个具身智能全栈学习社区:具身智能之心,平时分享了很多具身智能相关的算法、数据采集、软硬件方案等。主要方向涉及VLA
- 相机成像原理_键盘摄影(一)——相机成像基本元件
weixin_39620273
相机成像原理
写在前面笔者在就读本科期间,开始接触计算机视觉领域,主要包括传统的图像处理,研究生期间开始了解深度学习,三维重建和SLAM(同时定位和建图)。可是对于其中使用到的最重要的传感器,相机,它的成像原理知之甚少,照片是怎么成像的?有幸在工作之余玩起了胶片相机,学习了一些摄影知识,在此和大家分享相关知识,欢迎友好地指正和勘误,轻喷。随着器件的发展,目前的相机类型丰富,我们可以从基本的元件讲起,主要涉及到胶
- 【视觉SLAM基础(二):特征点提取与匹配】
Unpredictable222
SLAM算法算法自动驾驶ubuntuc++笔记opencv
前言在视觉SLAM中,特征点是连接连续图像帧的桥梁,是视觉里程计的核心。本文将详细介绍特征点的提取与匹配方法,以及如何利用这些特征点估计相机运动。原理部分只是简单介绍,详细的介绍大家可以去看高翔老师的《视觉SLAM十四讲》。1.特征点提取1.1特征点基本概念一个好的图像特征应该具有:可重复性:在不同图像中能被重复检测到可区分性:不同特征有显著区别高效性:计算复杂度低局部性:对遮挡、光照变化等鲁棒1
- 科研论文术语全解析:彻底搞懂什么是Baseline、Pipeline..........等内容【2025最新版!!!】
那就举个栗子!
计算机视觉解决方案人工智能
引言在撰写科研论文的过程中,尤其是在计算机视觉、机器人、SLAM以及三维重建等领域,准确理解并使用核心术语对于展示研究的科学性、系统性具有至关重要的作用。术语不仅是论文结构的骨架,也是向同行传达研究设计与创新思路的重要桥梁。本文旨在从实际科研写作的角度,系统性分析高频科研术语的定义与应用,帮助初学者准确理解其含义,掌握其写作位置与逻辑,最后以SLAM与3D高斯泼溅(3DGaussianSplatt
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro