ARM64 __create_page_tables分析

内核版本:Linux-4.17
平台:
Qemu + virt (cortex-a53)
4GB
物理内存地址空间:0x40000000~0x13fffffff
 
参考:
ARM64 Kernel Image Mapping的变化
ARM64的启动过程之(一):内核第一个脚印
ARM64的启动过程之(二):创建启动阶段的页表
ARM64的启动过程之(三):为打开MMU而进行的CPU初始化
ARM64的启动过程之(四):打开MMU
 
前提:
CONFIG_ARM64_PAGE_SHIFT=12
CONFIG_ARM64_VA_BITS=48
CONFIG_ARM64_PA_BITS=48
CONFIG_PGTABLE_LEVELS=4
2^32 = 4GB
2^48 = 256TB
2^47 = 128TB
 
分析
1 /*
2  * Setup the initial page tables. We only setup the barest amount which is
3  * required to get the kernel running. The following sections are required:
4  *   - identity mapping to enable the MMU (low address, TTBR0)
5  *   - first few MB of the kernel linear mapping to jump to once the MMU has
6  *     been enabled
7  */
8 __create_page_tables:
9     mov    x28, lr
从注释看,这里会建立两种section,分别完成identity mapping和kernel image mapping。
/* * Invalidate the idmap and swapper page tables to avoid potential * dirty cache lines being evicted. */ adrp x0, idmap_pg_dir adrp x1, swapper_pg_end sub x1, x1, x0 bl __inval_dcache_area
1     /*
2      * Invalidate the idmap and swapper page tables to avoid potential
3      * dirty cache lines being evicted.
4      */
5     adrp    x0, idmap_pg_dir
6     adrp    x1, swapper_pg_end
7     sub    x1, x1, x0
8     bl    __inval_dcache_area
这里将(idmap_pg_dir, swapper_pg_end)这段物理地址范围对应的dcache进行invalidate。这里的idmap_pg_dir和swapper_pg_end是在vmlinux.lds.S中设置的:
 1     . = ALIGN(PAGE_SIZE);
 2     idmap_pg_dir = .;
 3     . += IDMAP_DIR_SIZE;
 4 
 5 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
 6     tramp_pg_dir = .;
 7     . += PAGE_SIZE;
 8 #endif
 9 
10     swapper_pg_dir = .;
11     . += SWAPPER_DIR_SIZE;
12     swapper_pg_end = .;

其中IDMAP_DIR_SIZE定义如下:

#define IDMAP_DIR_SIZE (IDMAP_PGTABLE_LEVELS * PAGE_SIZE)
#define IDMAP_PGTABLE_LEVELS (ARM64_HW_PGTABLE_LEVELS(PHYS_MASK_SHIFT) - 1)
#define PHYS_MASK_SHIFT (CONFIG_ARM64_PA_BITS)
这里的CONFIG_ARM64_PA_BITS配置的是48. 这里的含义是,计算采用section mapping的话,需要几个页来存放table。
 
上面ARM64_HW_PGTABLE_LEVELS很关键,根据配置的物理地址线的宽度计算需要的level个数:
#define ARM64_HW_PGTABLE_LEVELS(va_bits) (((va_bits) - 4) / (PAGE_SHIFT - 3))
乍一看可以不太好理解,从注释可以知道,这是简化后的形式,完整的计算公式是:
 * ((((va_bits) - PAGE_SHIFT) + (PAGE_SHIFT - 3) - 1) / (PAGE_SHIFT - 3))
结合vmlinux.lds,上面的公式就是: ((48-12)+(12-3)-1) / (12-3) = (36+9-1)/9 = 44/9 = 4
 
理解它需要仔细观察一下ARM64上不同的granule size对应的虚拟地址的结构:
4KB:
ARM64 __create_page_tables分析_第1张图片

 

16KB:
ARM64 __create_page_tables分析_第2张图片

 

64KB:
ARM64 __create_page_tables分析_第3张图片

 

可以发现如下规律:
每一种granule size的各个level table index占用的位数都相同,并且都比block offset少3个bit,而这里的block offset就是12。所以IDMAP_DIR_SIZE是3个page的大小,也就是12KB。
 
SWAPPER_DIR_SIZE的稍微麻烦,表示存放映射内核镜像需要的table需要占用几个页,如果不开启KASLR,并且对于section mapping的话,SWAPPER_PGTABLE_LEVELS的值是(CONFIG_PGTABLE_LEVELS - 1),也就是3.
 
#define SWAPPER_DIR_SIZE (PAGE_SIZE * EARLY_PAGES(KIMAGE_VADDR + TEXT_OFFSET, _end)) 这里(KIMAGE_VADDR + TEXT_OFFSET)是内核的的虚拟起始地址, _end是虚拟结束地址
可以将计算过程单独提取出来,看看计算结果:
 1 #include 
 2 
 3 #define CONFIG_PGTABLE_LEVELS 4
 4 #define CONFIG_ARM64_PAGE_SHIFT 12
 5 
 6 #define PAGE_SHIFT        CONFIG_ARM64_PAGE_SHIFT
 7 
 8 #define ARM64_HW_PGTABLE_LEVEL_SHIFT(n)    ((PAGE_SHIFT - 3) * (4 - (n)) + 3)
 9 
10 #define PGDIR_SHIFT        ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - CONFIG_PGTABLE_LEVELS)
11 
12 #define EARLY_ENTRIES(vstart, vend, shift) (((vend) >> (shift)) \
13                     - ((vstart) >> (shift)) + 1)
14 
15 #define EARLY_PGDS(vstart, vend) (EARLY_ENTRIES(vstart, vend, PGDIR_SHIFT))
16 
17 #define PUD_SHIFT        ARM64_HW_PGTABLE_LEVEL_SHIFT(1)
18 
19 #define SWAPPER_TABLE_SHIFT    PUD_SHIFT
20 
21 #define EARLY_PMDS(vstart, vend) (EARLY_ENTRIES(vstart, vend, SWAPPER_TABLE_SHIFT))
22 
23 int main(int argc, const char *argv[])
24 {
25     unsigned long long a;
26 
27     unsigned long long start = 0xffff000008080000;
28     unsigned long long end = 0xffff000009536000;
29 
30     a = 1 + EARLY_PGDS(start, end) + EARLY_PMDS(start, end);
31 
32     printf("a: %llu\n", a);
33     return 0;
34 }

运行结果是3,所以SWAPPER_DIR_SIZE也是12KB,分别存放PGD、PUD和PMD表项,这个计算方法也容易理解,其中1表示存放level0 table需要1页,EARLY_PGDS(start, end)计算映射(start, end)占用了level0 table中几个表项,而每一个level0表项将来都会指向一个level1 table的物理首地址,每个level1 table占一页,所以可以得到存放level1 table一共需要几页,EARLY_PMDS(start, end)用于计算映射(start, end)需要占用的level1 table的表项的总和,因为level1 table的每个表项都会指向一个level2 table的物理首地址,而每个level2 table也占一页,所以可以得到存放level2 table一共需要几页

 
接着分析__create_page_tables:
    /*
     * Clear the idmap and swapper page tables.
     */
    adrp    x0, idmap_pg_dir
    adrp    x1, swapper_pg_end
    sub    x1, x1, x0
1:    stp    xzr, xzr, [x0], #16
    stp    xzr, xzr, [x0], #16
    stp    xzr, xzr, [x0], #16
    stp    xzr, xzr, [x0], #16
    subs    x1, x1, #64
    b.ne    1b

将存放转换表的内存清空。

 
下面开始创建identity mapping:
 1     mov    x7, SWAPPER_MM_MMUFLAGS   // level2的block entry会用到
 2 
 3     adrp    x0, idmap_pg_dir
 4     adrp    x3, __idmap_text_start        // __pa(__idmap_text_start)
 5     adrp    x5, __idmap_text_end
 6     clz    x5, x5
 7     cmp    x5, TCR_T0SZ(VA_BITS)    // default T0SZ small enough?
 8     b.ge    1f            // .. then skip VA range extension
 9 
10     adr_l    x6, idmap_t0sz
11     str    x5, [x6]
12     dmb    sy
13     dc    ivac, x6        // Invalidate potentially stale cache line
14 
15     mov    x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
16     str_l    x4, idmap_ptrs_per_pgd, x5
17 
18 1:
19     ldr_l    x4, idmap_ptrs_per_pgd
20     mov    x5, x3                // __pa(__idmap_text_start)
21     adr_l    x6, __idmap_text_end        // __pa(__idmap_text_end)
22 
23     map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14

第23行的宏map_memory实现: 将虚拟地址[x3, x6]映射到(__idmap_text_start当前在物理内存中的地址)~(__idmap_text_end当前在物理内存中的地址),table从idmap_pg_dir当前所在的物理地址处开始存放。结合System.map,可以看到在这个范围内包含下面的符号,目的是保证在开启MMU的后,程序还可以正常运行:

ffff000008bdf000 T __idmap_text_start
ffff000008bdf000 T kimage_vaddr
ffff000008bdf008 T el2_setup
ffff000008bdf054 t set_hcr
ffff000008bdf128 t install_el2_stub
ffff000008bdf17c t set_cpu_boot_mode_flag
ffff000008bdf1a0 T secondary_holding_pen
ffff000008bdf1c4 t pen
ffff000008bdf1d8 T secondary_entry
ffff000008bdf1e4 t secondary_startup
ffff000008bdf1f4 t __secondary_switched
ffff000008bdf228 T __enable_mmu
ffff000008bdf284 t __no_granule_support
ffff000008bdf2a8 t __primary_switch
ffff000008bdf2c8 T cpu_resume
ffff000008bdf2e8 T __cpu_soft_restart
ffff000008bdf328 T cpu_do_resume
ffff000008bdf39c T idmap_cpu_replace_ttbr1
ffff000008bdf3d4 t __idmap_kpti_flag
ffff000008bdf3d8 T idmap_kpti_install_ng_mappings
ffff000008bdf414 t do_pgd
ffff000008bdf42c t next_pgd
ffff000008bdf438 t skip_pgd
ffff000008bdf46c t walk_puds
ffff000008bdf474 t do_pud
ffff000008bdf48c t next_pud
ffff000008bdf498 t skip_pud
ffff000008bdf4a8 t walk_pmds
ffff000008bdf4b0 t do_pmd
ffff000008bdf4c8 t next_pmd
ffff000008bdf4d4 t skip_pmd
ffff000008bdf4e4 t walk_ptes
ffff000008bdf4ec t do_pte
ffff000008bdf50c t skip_pte
ffff000008bdf51c t __idmap_kpti_secondary
ffff000008bdf564 T __cpu_setup
ffff000008bdf5f8 T __idmap_text_end

 

接下来是进行kernel  section mapping:
    adrp    x0, swapper_pg_dir
    mov_q    x5, KIMAGE_VADDR + TEXT_OFFSET    // compile time __va(_text)
    add    x5, x5, x23            // add KASLR displacement
    mov    x4, PTRS_PER_PGD
    adrp    x6, _end            // runtime __pa(_end)
    adrp    x3, _text            // runtime __pa(_text)
    sub    x6, x6, x3            // _end - _text
    add    x6, x6, x5            // runtime __va(_end)

    map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14

上面完成的工作是: 将kernel镜像占用的虚拟地址空间[_text, _end]映射到当前kernel镜像当前所在的物理内存地址空间上,table存放到swapper_pg_dir当前所在的物理内存地址处。

结合System.map可以看到,上面把kernel镜像占用的内存全部映射了, 大约20MB左右
ffff000008080000 t _head
ffff000008080000 T _text
ffff000008080040 t pe_header
ffff000008080044 t coff_header
ffff000008080058 t optional_header
ffff000008080070 t extra_header_fields
ffff0000080800f8 t section_table
ffff000008081000 T __exception_text_start
ffff000008081000 T _stext
... ...
ffff000009536000 B _end
ffff000009536000 B swapper_pg_end    

到这里,可以得到如下映射关系:

ARM64 __create_page_tables分析_第4张图片

 

下面结合kernel img的映射分析一下map_memory是如何做到的:
    adrp    x0, swapper_pg_dir
    mov_q    x5, KIMAGE_VADDR + TEXT_OFFSET    // compile time __va(_text)
    add    x5, x5, x23            // add KASLR displacement, 如果不支持内核镜像加载地址随机化,x23为0
    mov    x4, PTRS_PER_PGD   // 每个level0 table有一个表项,为1<<9
    adrp    x6, _end            // runtime __pa(_end)
    adrp    x3, _text            // runtime __pa(_text)
    sub    x6, x6, x3            // _end - _text
    add    x6, x6, x5            // runtime __va(_end)

    map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
结合注释,x5和x6分别存放需要映射的虚拟地址的起始和结束地址,x7表示表项的flags,x3存放需要被映射的物理起始地址,x4存放一个level0 table包含的表项的个数(1<<9)。
由于后面kernel会自己重新再建立页表,所以这里采用的映射比较粗糙,在level2 table里使用的是Block descriptor,每个block descriptor可以映射2MB物理地址,这样只需要3个页来就可以放下用于映射kernel镜像的table(level0、level1和level2),如下图:
ARM64 __create_page_tables分析_第5张图片

 上面的map_memory就负责建立上图中level0到level2的数据结构关系,没有用到level3

ARM64提供了四种不同的descriptor type:
ARM64 __create_page_tables分析_第6张图片
这里用到了Table descriptor和Block entry两种。
 
下面是map_memory的实现:
/*
 * Map memory for specified virtual address range. Each level of page table needed supports
 * multiple entries. If a level requires n entries the next page table level is assumed to be
 * formed from n pages.
 *
 *    tbl:    location of page table
 *    rtbl:    address to be used for first level page table entry (typically tbl + PAGE_SIZE)
 *    vstart:    start address to map
 *    vend:    end address to map - we map [vstart, vend]
 *    flags:    flags to use to map last level entries
 *    phys:    physical address corresponding to vstart - physical memory is contiguous
 *    pgds:    the number of pgd entries
 *
 * Temporaries:    istart, iend, tmp, count, sv - these need to be different registers
 * Preserves:    vstart, vend, flags
 * Corrupts:    tbl, rtbl, istart, iend, tmp, count, sv
 */
    .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
    add \rtbl, \tbl, #PAGE_SIZE
    mov \sv, \rtbl
    mov \count, #0
    compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
    populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
    mov \tbl, \sv
    mov \sv, \rtbl

    compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
    populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
    mov \tbl, \sv

    compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
    bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
    populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
    .endm

其中涉及到两个宏compute_indices和populate_entries,前者计算需要占用某个level的表项的索引范围,后者用于填充被占用的那些表项。

 
下面是compute_indices实现:
/*
 * Compute indices of table entries from virtual address range. If multiple entries
 * were needed in the previous page table level then the next page table level is assumed
 * to be composed of multiple pages. (This effectively scales the end index).
 *
 *    vstart:    virtual address of start of range
 *    vend:    virtual address of end of range
 *    shift:    shift used to transform virtual address into index
 *    ptrs:    number of entries in page table
 *    istart:    index in table corresponding to vstart
 *    iend:    index in table corresponding to vend
 *    count:    On entry: how many extra entries were required in previous level, scales
 *              our end index.
 *        On exit: returns how many extra entries required for next page table level
 *
 * Preserves:    vstart, vend, shift, ptrs
 * Returns:    istart, iend, count
 */
    .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
    lsr    \iend, \vend, \shift
    mov    \istart, \ptrs
    sub    \istart, \istart, #1
    and    \iend, \iend, \istart    // iend = (vend >> shift) & (ptrs - 1)
    mov    \istart, \ptrs
    mul    \istart, \istart, \count
    add    \iend, \iend, \istart    // iend += (count - 1) * ptrs
                    // our entries span multiple tables

    lsr    \istart, \vstart, \shift
    mov    \count, \ptrs
    sub    \count, \count, #1
    and    \istart, \istart, \count

    sub    \count, \iend, \istart
    .endm

 

下面是populate_entries的实现:

/*
 * Macro to populate page table entries, these entries can be pointers to the next level
 * or last level entries pointing to physical memory.
 *
 *    tbl:    page table address
 *    rtbl:    pointer to page table or physical memory
 *    index:    start index to write
 *    eindex:    end index to write - [index, eindex] written to
 *    flags:    flags for pagetable entry to or in
 *    inc:    increment to rtbl between each entry
 *    tmp1:    temporary variable
 *
 * Preserves:    tbl, eindex, flags, inc
 * Corrupts:    index, tmp1
 * Returns:    rtbl
 */
    .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
.Lpe\@:    phys_to_pte \tmp1, \rtbl
    orr    \tmp1, \tmp1, \flags    // tmp1 = table entry
    str    \tmp1, [\tbl, \index, lsl #3]
    add    \rtbl, \rtbl, \inc    // rtbl = pa next level
    add    \index, \index, #1
    cmp    \index, \eindex
    b.ls    .Lpe\@
    .endm

 

如果将上面的操作转换成C语言,就容易理解了:
void populate_entries(char *tbl, char **rtbl, int index, int eindex,
    int flags, int inc, char *tmp1)
{
    while (index <= eindex) {
        tmp1 = *rtbl;
        tmp1 = tmp1 | flags;
        *(tbl + index*8) = tmp1;

        *rtbl = *rtbl + inc;
        index++;
    }
}

void compute_indices (uint64_t vstart, uint64_t vend, int shift, int ptrs,
    int *istart, int *iend, int *count)
{
    *iend = vend >> shift;
    *istart = ptrs;
    *istart = *istart - 1;
    *iend = *iend & *istart; // 计算end index
    
    *istart = ptrs;
    *istart = (*istart) * (*count);
    *iend = *iend + *istart; // 由于*count是0,这里end index没变变化

    *istart = vstart >> shift;
    *count = ptrs;
    *count = *count - 1;
    *istart = *istart & *count;  // 计算start index

    *count = *iend - *istart; // 计算需要的index的数量
}

void map_memory(char *tbl, char *rtbl, uint64_t vstart, uint64_t vend, int flags,
    uint64_t phys, int pgds, int istart, int iend, int tmp, int count, char *sv)
{
#define PAGE_SIZE (1 << 12)

    tbl = (char *)malloc(PAGE_SIZE * 3); // 用于存放level0~level2的table的缓冲区

    rtbl = tbl + PAGE_SIZE; // rtbl指向下一个level的table
    sv = rtbl;
    count = 0;

#define PGDIR_SHIFT (39)
#define PMD_TYPE_TABLE (0x3 << 0)  // 表示table descriptor
#define PGDS (1 << 9)

    compute_indices(vstart, vend, PGDIR_SHIFT, PGDS, &istart, &iend, &count);
    populate_entries(tbl, &rtbl, istart, iend, PMD_TYPE_TABLE, PAGE_SIZE, tmp);

    tbl = sv;
    sv = rtbl;

#define SWAPPER_TABLE_SHIFT (30)
#define PTRS_PER_PMD (1<<9)

    compute_indices(vstart, vend, SWAPPER_TABLE_SHIFT, PTRS_PER_PMD, &istart, &iend, &count);
    populate_entries(tbl, &rtbl, istart, iend, PMD_TYPE_TABLE, PAGE_SIZE, tmp); //table descriptor

    tbl = sv;

#define SWAPPER_BLOCK_SHIFT (21)
#define PTRS_PER_PTE (1 << 9)      //512
#define SWAPPER_BLOCK_SIZE (1<<21) //2MB
// 这里的flags是SWAPPER_MM_MMUFLAGS,为((4<<2) | ((1<<0) | (1<<10) | (3<<8))), 类型Block entry


    compute_indices(vstart, vend, SWAPPER_BLOCK_SHIFT, PTRS_PER_PTE, &istart, &iend, &count);
    count = phys ^ (SWAPPER_BLOCK_SIZE - 1);
    populate_entries(tbl, &count, istart, iend, flags, SWAPPER_BLOCK_SIZE, tmp);
}

由于我们编译出来的kernel大概有20.7MB左右,所以用level0 table需要一项(512G),level1 table需要一项(1GB),level2 block需要11个(22MB)。

 ARM64 __create_page_tables分析_第7张图片

 

 
完。

你可能感兴趣的:(ARM64 __create_page_tables分析)