给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 出发。
说明:
如果存在多种有效的行程,你可以按字符自然排序返回最小的行程组合。例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前
所有的机场都用三个大写字母表示(机场代码)。
假定所有机票至少存在一种合理的行程。
示例 1:
输入: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
输出: ["JFK", "MUC", "LHR", "SFO", "SJC"]
示例 2:
输入: [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出: ["JFK","ATL","JFK","SFO","ATL","SFO"]
解释: 另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"]。但是它自然排序更大更靠后。
普通dfs
class Solution {
public:
vector<string> ans;
vector<string> cur;
vector<string> findItinerary(vector<vector<string>>& tickets) {
int n = tickets.size();
if(n == 0) return ans;
sort(tickets.begin(), tickets.end());
vector<int>visited(n, 0);
for(int i = 0; i < n; i++){
if(tickets[i][0] == "JFK"){
ans.push_back("JFK");
dfs(tickets, n, tickets[i][0], visited);
break;
}
}
return ans;
}
void dfs(vector<vector<string>>& tickets, int n, string start, vector<int>& visited){
for(int i = 0; i < n; i++){
if(!visited[i] && tickets[i][0] == start){
visited[i] = 1;
ans.push_back(tickets[i][1]);
int oldans = ans.size();
dfs(tickets, n, tickets[i][1], visited);
if(oldans == ans.size() && (ans.size() != n+1)){
visited[i] = 0;
ans.pop_back();
}
}
}
return;
}
};
欧拉路径
vector<string> findItinerary(vector<vector<string>> &tickets) {
unordered_map<string, multiset<string>> m; //multiset相当于小根堆,用于排序
for(auto& ticket : tickets)
m[ticket[0]].insert(ticket[1]);
vector<string> ans;
dfs("JFK", m, ans);
return vector<string>(ans.rbegin(), ans.rend());
}
void dfs(string from, unordered_map<string, multiset<string>>& m, vector<string> &ans){
while(m[from].size() != 0){
string to = *m[from].begin();
m[from].erase(m[from].begin());
dfs(to, m, ans);
}
ans.push_back(from); // 将孤立节点放在最后访问
}