多维矩阵np.sum()函数axis不同值的理解

np.sum()

官网源码

def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
    """
    Sum of array elements over a given axis.
    Parameters
    ----------
    a : array_like
        Elements to sum.
    axis : None or int or tuple of ints, optional
        Axis or axes along which a sum is performed.  The default,
        axis=None, will sum all of the elements of the input array.  If
        axis is negative it counts from the last to the first axis.
        .. versionadded:: 1.7.0
        If axis is a tuple of ints, a sum is performed on all of the axes
        specified in the tuple instead of a single axis or all the axes as
        before.
    dtype : dtype, optional
        The type of the returned array and of the accumulator in which the
        elements are summed.  The dtype of `a` is used by default unless `a`
        has an integer dtype of less precision than the default platform
        integer.  In that case, if `a` is signed then the platform integer
        is used while if `a` is unsigned then an unsigned integer of the
        same precision as the platform integer is used.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output, but the type of the output
        values will be cast if necessary.
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left
        in the result as dimensions with size one. With this option,
        the result will broadcast correctly against the input array.
        If the default value is passed, then `keepdims` will not be
        passed through to the `sum` method of sub-classes of
        `ndarray`, however any non-default value will be.  If the
        sub-classes `sum` method does not implement `keepdims` any
        exceptions will be raised.
    Returns
    -------
    sum_along_axis : ndarray
        An array with the same shape as `a`, with the specified
        axis removed.   If `a` is a 0-d array, or if `axis` is None, a scalar
        is returned.  If an output array is specified, a reference to
        `out` is returned.
    See Also
    --------
    ndarray.sum : Equivalent method.
    cumsum : Cumulative sum of array elements.
    trapz : Integration of array values using the composite trapezoidal rule.
    mean, average
    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.
    The sum of an empty array is the neutral element 0:
    >>> np.sum([])
    0.0
    Examples
    --------
    >>> np.sum([0.5, 1.5])
    2.0
    >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
    1
    >>> np.sum([[0, 1], [0, 5]])
    6
    >>> np.sum([[0, 1], [0, 5]], axis=0)
    array([0, 6])
    >>> np.sum([[0, 1], [0, 5]], axis=1)
    array([1, 5])
    If the accumulator is too small, overflow occurs:
    >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
    -128
    """
    kwargs = {}
    if keepdims is not np._NoValue:
        kwargs['keepdims'] = keepdims
    if isinstance(a, _gentype):
        res = _sum_(a)
        if out is not None:
            out[...] = res
            return out
        return res
    if type(a) is not mu.ndarray:
        try:
            sum = a.sum
        except AttributeError:
            pass
        else:
            return sum(axis=axis, dtype=dtype, out=out, **kwargs)
    return _methods._sum(a, axis=axis, dtype=dtype,
                         out=out, **kwargs)

简单理解

shape为[i,j,k,l……]的矩阵a

维度变换

axis为几,就去掉对应下标的维度,如axis=2,shape变为[i,j,l……].

内容计算

块累加解释

总结起来就是块与块的累加,为方便理解,我们用[{(),(),()},{(),(),()}]表示shape(2,3,*)的矩阵
axis= 0表示对第外层[]里的最大单位块{(),()},做块与块之间的运算,两个{(),()}累加,同时移除最外层[],变成{(),()}
axis=1表示对次外层{}里的最大单元(),做块与块运算,每个{}内的三个()累加,同时移除次外层{},变成[(),()]:
axis=2表示对次外层()里的最大单元,做块与块运算,同时移除次外层(),变成[{ , , },{ , , }]

a = np.array([[[1,2],[3,4],[5,6]],[[7,8],[9,10],[11,12]]])

print(a.shape)
(2, 3, 2)
a
array([[[ 1,  2],
        [ 3,  4],
        [ 5,  6]],

       [[ 7,  8],
        [ 9, 10],
        [11, 12]]])
#axis = 0 ======================================
b = np.sum(a,axis = 0)
print(b.shape)
(3, 2)
b
array([[ 8, 10],
       [12, 14],
       [16, 18]])
#axis = 1 ======================================
b = np.sum(a,axis = 1)
(2, 2)
print(b.shape)
b
array([[ 9, 12],
       [27, 30]])
#axis = 2 ======================================
b = np.sum(a,axis = 2)
print(b.shape)
(2, 3)
b
array([[ 3,  7, 11],
       [15, 19, 23]])

公式计算解释

如果axis = 0,a[j,k,l……] = ∑i(a[i,j,k,l……])
如果axis = 1,a[i,k,l……] = ∑j(a[i,j,k,l……])
如果axis = 2,a[i,j,l……] = ∑k(a[i,j,k,l……])

你可能感兴趣的:(numpy)