C++20 要来了!

640?wx_fmt=gif

导读:C++的新标准又双叒叕要到来了,是的,C++20要来了!


本文经授权转自公众号CSDN(ID:CSDNnews),作者:祁宇


C++20 要来了!_第1张图片

▲图片来源:udemy.com


几周前,C++标准委会历史上规模最大的一次会议(180人参会)在美国San Diego召开,这次的会议上讨论确定哪些特性要加入到C++20中,哪些特性可能加入到C++20中。在明年二月份的会议当中将正式确定所有的C++20特性。


这次会议讨论的提案也是非常之多,达到了创纪录的274份,C++20的新特性如果要一一列出的话将是一份长长的清单,因此本文将只评论大部分确定要加入和可能加入到C++20的重要特性,让读者对C++的未来和演进趋势有一个基本的了解。


C++20中可能增加哪些重要特性,下面这个图可以提供一个参考。


C++20 要来了!_第2张图片


下面是本文将评论的将进入和可能进入C++20的重要特性:


  • Concepts

  • Ranges

  • Modules

  • Coroutines

  • Reflection


接下来让我们慢慢揭开C++20的面纱,看看这些特性到底是什么样的,它们解决了什么问题。



01 Concepts


在谈Concepts之前我想先介绍一下Concepts提出的背景和原因。众所周知,因为C++的模版和模版元具备非常强大的泛型抽象能力并且是zero overhead,所以模版在C++中备受推崇,大获成功,在各种C++库(如STL)中被广泛使用。


然而,模版编程还存在一些问题,比如有些模版的代码写起来比较困难,读起来比较难懂,尤其是编译出错的时候,那些糟糕的让人摸不着头脑的错误提示让人头疼。


因此,C++之父Bjarne Stroustrup很早就希望对模版做一些改进,让C++的模版编程变得简单好写,错误提示更明确。他早在1987年就开始做这方面的尝试了。


C++20 要来了!_第3张图片

▲C++之父Bjarne Stroustrup


具体思路就是给模版参数加一些约束,这些约束相比之前的写法具有更强的表达能力和可读性,会简化C++的泛型模版代码的编写。


所以Concepts的出现主要是为了简化泛型编程,一个Concept就是一个编译期判断,用于约束模版参数,Concepts则是这些编译期判断的合集。下面通过一个例子来展示Concepts是如何简化模版编程的。


    template<typename T>
    class B {
    public:
      template<typename ToString = T>
      typename std::enable_if_t<std::is_convertiblestd::string>::value, std::string>
      to_string() const {
        return "Class B<>";
      }
    };

    B<size_t> b1;                             // OK
    std::cout << b1.to_string() << std::endl// Compile ERROR!

    B<std::string> b2;                        // OK
    std::cout << b2.to_string() << std::endl// OK!


比如有这样一个类B,我们调用它的成员函数tostring时,对T类型进行限定,即限定T类型是std::string的可转换类型,这样做的目的是为了更安全,能在编译期就能检查错误。


这里通过C++14的std::enableif_t来对T进行限定,但是长长的enableift看起来比较冗长繁琐,头重脚轻。来看看用Concepts怎么写这个代码的。


    template
    concept CastableToString = requires(T a) {
      { a } -> std::string;
    };

    template
    class D {
    public:
      std::string to_string() const requires CastableToString {
        return "Class D<>";
      }
    };


可以看到,requires CastableToString比之前长长的enableift要简洁不少,代码可读性也更好,CastableToString就是一个Concept,一个限定T为能被转换为std::string类型的Concept,通过requires相连接,语义上也更明确了,而且这个Concept还可以复用。


Concepts的这个语法也可能在最终的C++20中有少许不同,有可能还会变得更简洁,现在语法有几个候选版本,还没最终投票确定。



02 Ranges


相比STL,Ranges是更高一层的抽象,Ranges对STL做了改进,它是STL的下一代。为什么说Ranges是STL的未来?虽然STL在C++中提供的容器和算法备受推崇和广泛被使用,但STL一直存在两个问题:


  • STL强制你必须传一个begin和end迭代器用来遍历一个容器;

  • STL算法不方便组合在一起。


STL必须传迭代器,这个迭代器仅仅是辅助你完成遍历序列的技术细节,和我们的函数功能无关,大部分时候我们需要的是一个range,代表的是一个比迭代器更高层的抽象。


那么Ranges到底是什么呢?Ranges是一个引用元素序列的对象,在概念上类似于一对迭代器。这意味着所有的STL容器都是Ranges。在Ranges里我们不再传迭代器了,而是传range。比如下面的代码:


STL写法:


    std::vector<int> v{12};
    std::sort(v.begin(), v.end());


Ranges写法:


    std::sort(v);


STL有时候不方便将一些算法组合在一起,来看一个例子:


    std::vector<int> v{12345};

    std::vector<int> event_numbers;
    std::copy_if(v.begin(), v.end(), std::back_inserter(event_numbers), [](int i){ return i % 2 == 0;});

    std::vector<int> results;
    std::transform(event_numbers.begin(), event_numbers.end(), std::back_inserter(event_numbers), [](int i){ return i * 2;});

    for(int n : results){
        std::cout<' ';
    }
    //最终会输出 4 8


上面这个例子希望得到vector中的偶数乘以2的结果,需求很简单,但是用STL写起来还是有些冗长繁琐,中间还定义了两个临时变量。如果用Ranges来实现这个需求,代码就会简单得多。


    auto results = v | ranges::view::filter([](int i){ return i % 2 == 0; })
                     | ranges::view::transform([](int i){ return i * 2; });


用Concetps我们可以很方便地将算法组合在一起,写法更简单,语义更清晰,并且还可以实现延迟计算避免了中间的临时变量,性能也会更好。


Concepts从设计上改进了之前STL的两个问题,让我们的容器和算法变得更加简单好用,还容易组合。



03 Modules


一直以来C++一直通过引用头文件方式使用库,而其他90年代以后的语言比如Java、C#、Go等语言都是通过import包的方式来使用库。现在C++决定改变这种情况了,在C++20中将引入Modules,它和Java、Go等语言的包的概念是类似的,直接通过import包来使用库,再也看不到头文件了。


为什么C++20不再希望使用#include方式了?因为使用头文件方式存在不少问题,比如有include很多模版的头文件将大大增加编译时间,代码生成物也会变大。


而且引用头文件方式不利于做一些C++库和组件的管理工具,尤其是对于一些云环境和分布式环境下不方便管理,C++一直缺一个包管理工具,这也是C++被吐槽得很多的地方,现在C++20 Modules将改变这一切。


Modules在程序中的结构如下图:


C++20 要来了!_第4张图片


上面的图中,每个方框表示一个翻译单元,存放在一个文件里并且可以被独立编译。每个Module由Module接口和实现组成,接口只有一份,实现可以有多份。


Modules接口和实现的语法:


    export module module_name;

    module module_name;


使用Modules:


    import module_name;


Modules允许你导出类,函数,变量,常量和模版等等。


接下来看一个使用Modules的例子:


    import std.vector// #include 
    import std.string// #include 
    import std.iostream; // #include 
    import std.iterator; // #include 
    int main() {
        using namespace std;
        vector<string> v = {
            "Socrates""Plato""Descartes""Kant""Bacon"
        };
        copy(begin(v), end(v), ostream_iterator<string>(cout"\n"));
    }


可以看到不用再include了,直接去import需要用到的Modules即可,是不是有种似曾相识的感觉呢。曾看到一个人说如果C++支持了Modules他就会从Java回归到C++,也说明这个特性也是非常受关注和期待的。



04 Coroutines


很多语言提供了Coroutine机制,因为Coroutine可以大大简化异步网络程序的编写,现在C++20中也要加入协程了(乐观估计C++20加入,悲观估计在C++23中加入)。


如果不用协程,写一个异步的网络程序是不那么容易的,以boost.asio的异步网络编程为例,我们需要注意的地方很多,比如异步事件完成的回调函数中需要保证调用对象仍然存在,如何构建异步回调链条等等,代码比较复杂,而且出了问题也不容易调试。而协程给我们提供了对异步编程优雅而高效的抽象,让异步编程变得简单!


C++ Courotines中增加了三个新的关键字:co_await,co_yield和co_return,如果一个函数体中有这三个关键字之一就变成Coroutine了。


co_await用来挂起和恢复一个协程,co_return用来返回协程的结果,co_yield返回一个值并且挂起协程。


下面来看看如何使用它们。


写一个lazy sequence:


    generator<int> get_integers( int start=0int step=1 ) {
      for (int current=start; current+= step)
        co_yield current;
    }

    for(auto n : get_integers(05)){
      std::cout<" ";
    }
    std::cout<<'\n';


上面的例子每次调用get_integers,只返回一个整数,然后协程挂起,下次调用再返回一个整数,因此这个序列不是即时生成的,而是延迟生成的。


接下来再看一下co_wait是如何简化异步网络程序的编写的:


    char data[1024];
    for (;;)
    {
      std::size_t n = co_await socket.async_read_some(boost::asio::buffer(data), token);
      co_await async_write(socket, boost::asio::buffer(data, n), token);
    }


这个例子仅仅用了四行代码就完成了异步的echo,非常简洁!co_await会在异步读完成之前挂起协程,在异步完成之后恢复协程继续执行,执行到async_write时又会挂起协程直到异步写完成,异步写完成之后继续异步读,如此循环。如果不用协程代码会比较繁琐,需要像这样写:


    void do_read()
    {
      auto self(shared_from_this());
      socket_.async_read_some(boost::asio::buffer(data_, max_length),
        [this, self](boost::system::error_code ec, std::size_t length)
         {
           if (!ec)
           {
             do_write(length);
           }
         });
      }

    void do_write(std::size_t length)
    {
      auto self(shared_from_this());
      boost::asio::async_write(socket_, boost::asio::buffer(data_, length),
        [this, self](boost::system::error_code ec, std::size_t /*length*/)
        {
          if (!ec)
          {
            do_read();
          }
        });
    }


可以看到,不使用协程来写异步代码的话,需要构建异步的回调链,需要保持异步回调的安全性等等。而使用协程可以大大简化异步网络程序的编写。



05 Reflection


C++中一直缺少反射功能,其他很多语言如Java、C#都具备运行期反射功能。反射可以用来做很多事情:比如做对象的序列化,把对象序列化为JSON、XML等格式,以及ORM中的实体映射,还有RPC远程过程(方法)调用等,反射是应用程序中非常需要的基础功能。


现在C++终于要提供反射功能了,C++20中可会将反射作为实验库,在C++23中正式加入到标准中。


在反射还没有进入到C++标准之前,有很多人做了一些编译期反射的库,比如purecpp社区开源的序列化引擎iguana,以及ORM库ormpp,都是基于编译期反射实现的。


然后,非语言层面支持的反射库存在种种不足之处,比如在实现上需要大量使用模版元和宏、不能访问私有成员等问题。


现在C++终于要提供完备地编译期反射功能了,为什么是编译期反射而不是像其它语言一样提供运行期反射,因为C++的一个重要设计哲学就是zero-overhead,编译期反射效率远高于运行期反射。


那么,通过C++20的编译期反射我们能得到什么呢?我们可以得到很多很多关于类型和对象的元信息,主要有:


  • 获取对象类型或枚举类型的成员变量,成员函数的类型;

  • 获取类型和成员的名称;

  • 获取成员变量是静态的还是constexpr;

  • 获取方法是virtual、public、protect还是private;

  • 获取类型定义时的源代码所在的行和列。


所以C++20的反射其实是提供了一些可以编译期向编译器查询目标类型“元数据”的API,下面来看看C++20的反射用法:


    struct person{
        int id;
        std::string name;
    };

    using MetaPerson = reflexpr(person);
    using Members = std::reflect::get_data_members_t;

    using Metax = std::reflect::get_data_members_t;
    constexpr bool is_public = std::reflect::is_public_v;

    using Field0 = std::reflect::get_reflected_type_t;// int


上面的例子中,C++20新增关键字reflexpr返回的是person的元数据类型,接下来我们就可以查询这个元数据类型了,std::reflect::getdatamembers_t返回的是对象成员的元数据序列,我们可以像访问tuple一样访问这个序列,得到某一个字段的元数据之后我们就可以获取它的具体信息了,比如它的具体类型是什么,它的字段名是什么,它是公有还是私有的等等。


注意:C++20的反射语法还没有最终确定,这只是一种候选的语法实现,还有一种没有元编程的语法版本,该版本通过编译期容器和字符串来存放元数据,比如constexpr std::vector,constexpr std::map,constexpr std::string等 ,这样就可以像普通的C++程序那样来操作元数据了,用起来可能更简单。


C++20的编译期反射实际上提供了一些编译期查询AST信息的接口,功能完备而强大。



06 总结


  • Concepts让C++的模版程序的编写变得更简单和容易理解;

  • Ranges让我们使用STL容器和算法更加简单,并且更容易组合算法及延迟计算;

  • Modules帮助我们大大加快编译速度,同时弥补了C++使用库和缺乏包管理的缺陷;

  • Coroutines帮助我们简化异步程序的编写;

  • Reflection给我们提供强大的编译期AST元数据查询能力;

  • ......


关于C++20的更多细节读者可以在这里查看:


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/


总而言之,C++的新标准都是为了让C++变得更简单、更完善、更强大、更易学和使用,这也是C++之父希望未来C++演进的一个方向和目标。


C++20,一言以蔽之:Newer is Better!


在此呼吁现在仍然还在使用着20年前的标准C++98的公司尽早升级到最新的标准,跟上时代的发展,新标准意味这生产力和质量的提升,越早使用越早享受其带来的好处!


关于作者:祁宇,modern c++开源社区purecpp.org创始人,《深入应用C++11》作者,开源库cinatra、feather作者,热爱开源,热爱modern C++。乐于研究和分享技术,多次在国际C++大会(cppcon)做演讲。


致谢:感谢purecpp社区的朋友:袁秩昊,吴咏炜和张轶对本文部分内容的review。


参考资料:


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/

https://isocpp.org/blog/2016/02/a-bit-of-background-for-concepts-and-cpp17-bjarne-stroustrup

https://www.reddit.com/r/cpp/comments/9vwvbz/2018sandiegoisoccommitteetripreportranges/

https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/

http://www.jakubkonka.com/2017/09/02/type-traits-cpp.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4128.html

https://arne-mertz.de/2017/01/ranges-stl-next-level/

https://www.fluentcpp.com/2018/02/09/introduction-ranges-library/

http://wg21.link/p1103

https://medium.com/@wrongway4you/brief-article-on-c-modules-f58287a6c64

https://www.codeproject.com/Articles/1214398/Modules-for-Modern-Cplusplus

https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await

https://lewissbaker.github.io/2017/09/25/coroutine-theory


640?


据统计,99%的大咖都完成了这个神操作


640?wx_fmt=png


更多精彩


在公众号后台对话框输入以下关键词

查看更多优质内容!


PPT | 报告 | 读书 | 书单

大数据 | 揭秘 | 人工智能 | AI

Python | 机器学习 | 深度学习 | 神经网络

可视化 | 区块链 | 干货 | 数学


猜你想看


  • 2018世界幸福指数中国排第86,这种报告是怎样做出来的?

  • 从入门到头秃,2018年机器学习图书TOP10

  • 写给中学生的算法入门:学代码之前看这篇就够了

  • 机器学习重大挑战:坏数据和坏算法正在毁掉你的项目



Q: 你对C++的新标准都有哪些期待

欢迎留言与大家分享

觉得不错,请把这篇文章分享给你的朋友

转载 / 投稿请联系:[email protected]

更多精彩,请在后台点击“历史文章”查看

640?wx_fmt=jpeg

你可能感兴趣的:(C++20 要来了!)