https://github.com/muyimo/MachineLearningAction.git
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 18/3/1 下午1:25
# @Author : cicada@hole
# @File : kNN.py
# @Desc : k-近邻算法的python实现
# @Link :
# 导入数据
from numpy import *
import operator # 运算符模块
import matplotlib.pyplot as plt
from os import listdir #列出目录的文件名
def createDataSet():
group = array([
[1.0, 1.1],
[1.0, 1.0],
[0, 0],
[0, 0.1]
]) # 创建4*2矩阵
labels = ['A', 'A', 'B', 'B'] # 对应标签
return group, labels
# k-近邻算法
# (输入向量,输入样本集,标签,最近邻居的数目)
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] # 4 shape为元祖(4,2)
# 1. 计算当前点与已知点的距离
diffMat = tile(inX, (dataSetSize,1)) - dataSet # 计算点之间的差 tile 将输入点 inX行重复4遍,列重复一遍
sqDiffMat = diffMat**2 # 取平方
sqDistance = sqDiffMat.sum(axis=1) # 1把该行相加,0把该列相加
distances = sqDistance**0.5
sortedDistIndicies = argsort(distances) #将距离升序排列
# print(sortedDistIndicies)
classCount={}
# 2. 选择距离最小的k个点
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
# 3. 排序
sortedClassCount = sorted(classCount.items(),
key=operator.itemgetter(1),
reverse=True)
return sortedClassCount[0][0]
# 解析文本,返回矩阵和标签向量
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines) # 得到文件行数
returnMat = zeros((numberOfLines,3)) # 文件行数*3 矩阵
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t') # 截取掉所有回车字符
returnMat[index,:] = listFromLine[0:3] #前三个元素作为特征
classLabelVector.append(int(listFromLine[-1])) # 列表元素为int
index += 1
return returnMat,classLabelVector
# 分析数据:使用matplotlib创建散点图
def createScatterPic(dataMat,label):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(dataMat[:,1], dataMat[:,2],
15.0*array(label), 15.0*array(label))
#展示第2、3列数据,第二参数:横轴纵轴长度 参数3:颜色范围序列
plt.show()
# 归一化特征值
def autoNorm(dataSet): # 1000*3
minVals = dataSet.min(0) # 从每列中选最小值 1*3
maxVals = dataSet.max(0) # 从每列中选最大值
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))# 1000*3
m = dataSet.shape[0] #行数
normDataSet = dataSet - tile(minVals, (m,1))
# print(dataSet,'\n', maxVals,'\n',minVals,'\n', (m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
# 分类器针对约会网站的测试代码
def datingClassTest():
hoRatio = 0.10 # 学习率
dataDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(dataDataMat) #归一化
m = normMat.shape[0]
numTestVecs = int(m*hoRatio) #用于测试的行数
errorCount = 0.0
for i in range(numTestVecs): # inX, 训练mat,训练label,k
classifierResult = classify0(
normMat[i,:],normMat[numTestVecs:m, :],
datingLabels[numTestVecs:m], 3)
print("the classifier came back with: %d, the real answer is: %d"\
% (classifierResult, datingLabels[i]))
if(classifierResult != datingLabels[i]):errorCount += 1.0
print(" the total error rate is: %f"\
% (errorCount/float(numTestVecs)))
def classifyPersion():
resultList = ['不喜欢','喜欢一点','非常喜欢']
percentTats = float(input("每周玩游戏时间?"))
ffMiles = float(input("飞行里程?"))
iceCream = float(input("每周吃冰淇淋的磅数?"))
dataDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(dataDataMat) # 归一化
inArr = array([ffMiles, percentTats, iceCream])
print('---inarr',inArr,'\n',minVals)
classifierResult = classify0((inArr - minVals)/ranges,
normMat, datingLabels, 3)
print("你对这个人的喜欢程度:",resultList[classifierResult - 1])
#-----------手写识别系统-----------
# 格式化图像为向量
def img2vector(filename):
returnVect = zeros((1,1024)) # 1x1024向量
fr = open(filename)
for i in range(32): #32x32的二进制图像
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
# 手写数字识别系统测试
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('digits/trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m, 1024)) #参数shape维度
for i in range(m):
fileNameStr = trainingFileList[i] # 0_0.txt
# print(fileNameStr)
fileStr = fileNameStr.split('.')[0] #0_0
classNumStr = int(fileStr.split('_')[0]) #对应的数字
# print('-------classNum', classNumStr)
hwLabels.append(classNumStr) #加入标签中
trainingMat[i, :] = img2vector('digits/trainingDigits/%s'
%fileNameStr) # 把图像转换为向量
testFileList = listdir('digits/testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest,\
trainingMat, hwLabels, 3)
print("the classifier came back with: %d,\
the real answer is : %d " \
% (classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount += 1.0
print("\n total number of errors is: %d" %errorCount)
print("\n total error tate is : %f" % (errorCount/float(mTest)))
def test():
# group, labels = createDataSet()
# print(group, labels)
# print(classify0([0,0], group, labels, 3))
# dataDataMat, datingLabels = file2matrix('datingTestSet2.txt')
# # createScatterPic(dataDataMat, datingLabels)
# autoNorm(dataDataMat)
# datingClassTest()
# classifyPersion()
# vect = img2vector('digits/testDigits/0_13.txt') #32x32图像转换为1x1024向量
# print(vect[0, 0:111])
handwritingClassTest()
if __name__ == '__main__':
test()