并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头

你我都知道,编写正确的并发程序是一件极困难的事情,并发程序的 Bug 往往会诡异地出现,然后又诡异地消失,很难重现,也很难追踪,很多时候都让人很抓狂。但要快速而又精准地解决“并发”类的疑难杂症,你就要理解这件事情的本质,追本溯源,深入分析这些 Bug 的源头在哪里。

那为什么并发编程容易出问题呢?它是怎么出问题的?今天我们就重点聊聊这些 Bug 的源头。

并发程序幕后的故事

这些年,我们的 CPU、内存、I/O 设备都在不断迭代,不断朝着更快的方向努力。但是,在这个快速发展的过程中,有一个核心矛盾一直存在,就是这三者的速度差异。CPU 和内存的速度差异可以形象地描述为:CPU 是天上一天,内存是地上一年(假设 CPU 执行一条普通指令需要一天,那么 CPU 读写内存得等待一年的时间)。内存和 I/O 设备的速度差异就更大了,内存是天上一天,I/O 设备是地上十年。

程序里大部分语句都要访问内存,有些还要访问 I/O,根据木桶理论(一只水桶能装多少水取决于它最短的那块木板),程序整体的性能取决于最慢的操作——读写 I/O 设备,也就是说单方面提高 CPU 性能是无效的。

为了合理利用 CPU 的高性能,平衡这三者的速度差异,计算机体系机构、操作系统、编译程序都做出了贡献,主要体现为:

  1. CPU 增加了缓存,以均衡与内存的速度差异;

  2. 操作系统增加了进程、线程,以分时复用 CPU,进而均衡 CPU 与 I/O 设备的速度差异;

  3. 编译程序优化指令执行次序,使得缓存能够得到更加合理地利用。

现在我们几乎所有的程序都默默地享受着这些成果,但是天下没有免费的午餐,并发程序很多诡异问题的根源也在这里。

源头之一:缓存导致的可见性问题

在单核时代,所有的线程都是在一颗 CPU 上执行,CPU 缓存与内存的数据一致性容易解决。因为所有线程都是操作同一个 CPU 的缓存,一个线程对缓存的写,对另外一个线程来说一定是可见的。例如在下面的图中,线程 A 和线程 B 都是操作同一个 CPU 里面的缓存,所以线程 A 更新了变量 V 的值,那么线程 B 之后再访问变量 V,得到的一定是 V 的最新值(线程 A 写过的值)。

并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头_第1张图片

CPU 缓存与内存的关系图

一个线程对共享变量的修改,另外一个线程能够立刻看到,我们称为可见性

多核时代,每颗 CPU 都有自己的缓存,这时 CPU 缓存与内存的数据一致性就没那么容易解决了,当多个线程在不同的 CPU 上执行时,这些线程操作的是不同的 CPU 缓存。比如下图中,线程 A 操作的是 CPU-1 上的缓存,而线程 B 操作的是 CPU-2 上的缓存,很明显,这个时候线程 A 对变量 V 的操作对于线程 B 而言就不具备可见性了。这个就属于硬件程序员给软件程序员挖的“坑”。

并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头_第2张图片

多核 CPU 的缓存与内存关系图

下面我们再用一段代码来验证一下多核场景下的可见性问题。下面的代码,每执行一次 add10K() 方法,都会循环 10000 次 count+=1 操作。在 calc() 方法中我们创建了两个线程,每个线程调用一次 add10K() 方法,我们来想一想执行 calc() 方法得到的结果应该是多少呢?

 
   

直觉告诉我们应该是 20000,因为在单线程里调用两次 add10K() 方法,count 的值就是 20000,但实际上 calc() 的执行结果是个 10000 到 20000 之间的随机数。为什么呢?

我们假设线程 A 和线程 B 同时开始执行,那么第一次都会将 count=0 读到各自的 CPU 缓存里,执行完 count+=1 之后,各自 CPU 缓存里的值都是 1,同时写入内存后,我们会发现内存中是 1,而不是我们期望的 2。之后由于各自的 CPU 缓存里都有了 count 的值,两个线程都是基于 CPU 缓存里的 count 值来计算,所以导致最终 count 的值都是小于 20000 的。这就是缓存的可见性问题。

循环 10000 次 count+=1 操作如果改为循环 1 亿次,你会发现效果更明显,最终 count 的值接近 1 亿,而不是 2 亿。如果循环 10000 次,count 的值接近 20000,原因是两个线程不是同时启动的,有一个时差。

并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头_第3张图片

变量 count 在 CPU 缓存和内存的分布图

源头之二:线程切换带来的原子性问题

由于 IO 太慢,早期的操作系统就发明了多进程,即便在单核的 CPU 上我们也可以一边听着歌,一边写 Bug,这个就是多进程的功劳。

操作系统允许某个进程执行一小段时间,例如 50 毫秒,过了 50 毫秒操作系统就会重新选择一个进程来执行(我们称为“任务切换”),这个 50 毫秒称为“时间片”。

并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头_第4张图片

线程切换示意图

在一个时间片内,如果一个进程进行一个 IO 操作,例如读个文件,这个时候该进程可以把自己标记为“休眠状态”并出让 CPU 的使用权,待文件读进内存,操作系统会把这个休眠的进程唤醒,唤醒后的进程就有机会重新获得 CPU 的使用权了。

这里的进程在等待 IO 时之所以会释放 CPU 使用权,是为了让 CPU 在这段等待时间里可以做别的事情,这样一来 CPU 的使用率就上来了;此外,如果这时有另外一个进程也读文件,读文件的操作就会排队,磁盘驱动在完成一个进程的读操作后,发现有排队的任务,就会立即启动下一个读操作,这样 IO 的使用率也上来了。

是不是很简单的逻辑?但是,虽然看似简单,支持多进程分时复用在操作系统的发展史上却具有里程碑意义,Unix 就是因为解决了这个问题而名噪天下的。

早期的操作系统基于进程来调度 CPU,不同进程间是不共享内存空间的,所以进程要做任务切换就要切换内存映射地址,而一个进程创建的所有线程,都是共享一个内存空间的,所以线程做任务切换成本就很低了。现代的操作系统都基于更轻量的线程来调度,现在我们提到的“任务切换”都是指“线程切换”。

Java 并发程序都是基于多线程的,自然也会涉及到任务切换,也许你想不到,任务切换竟然也是并发编程里诡异 Bug 的源头之一。任务切换的时机大多数是在时间片结束的时候,我们现在基本都使用高级语言编程,高级语言里一条语句往往需要多条 CPU 指令完成,例如上面代码中的count += 1,至少需要三条 CPU 指令。

  • 指令 1:首先,需要把变量 count 从内存加载到 CPU 的寄存器;

  • 指令 2:之后,在寄存器中执行 +1 操作;

  • 指令 3:最后,将结果写入内存(缓存机制导致可能写入的是 CPU 缓存而不是内存)。

操作系统做任务切换,可以发生在任何一条CPU 指令执行完,是的,是 CPU 指令,而不是高级语言里的一条语句。对于上面的三条指令来说,我们假设 count=0,如果线程 A 在指令 1 执行完后做线程切换,线程 A 和线程 B 按照下图的序列执行,那么我们会发现两个线程都执行了 count+=1 的操作,但是得到的结果不是我们期望的 2,而是 1。

并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头_第5张图片

非原子操作的执行路径示意图

我们潜意识里面觉得 count+=1 这个操作是一个不可分割的整体,就像一个原子一样,线程的切换可以发生在 count+=1 之前,也可以发生在 count+=1 之后,但就是不会发生在中间。我们把一个或者多个操作在 CPU 执行的过程中不被中断的特性称为原子性。CPU 能保证的原子操作是 CPU 指令级别的,而不是高级语言的操作符,这是违背我们直觉的地方。因此,很多时候我们需要在高级语言层面保证操作的原子性。

源头之三:编译优化带来的有序性问题

那并发编程里还有没有其他有违直觉容易导致诡异 Bug 的技术呢?有的,就是有序性。顾名思义,有序性指的是程序按照代码的先后顺序执行。编译器为了优化性能,有时候会改变程序中语句的先后顺序,例如程序中:“a=6;b=7;”编译器优化后可能变成“b=7;a=6;”,在这个例子中,编译器调整了语句的顺序,但是不影响程序的最终结果。不过有时候编译器及解释器的优化可能导致意想不到的 Bug。

在 Java 领域一个经典的案例就是利用双重检查创建单例对象,例如下面的代码:在获取实例 getInstance() 的方法中,我们首先判断 instance 是否为空,如果为空,则锁定 Singleton.class 并再次检查 instance 是否为空,如果还为空则创建 Singleton 的一个实例。

 
   

假设有两个线程 A、B 同时调用 getInstance() 方法,他们会同时发现 instance == null ,于是同时对 Singleton.class 加锁,此时 JVM 保证只有一个线程能够加锁成功(假设是线程 A),另外一个线程则会处于等待状态(假设是线程 B);线程 A 会创建一个 Singleton 实例,之后释放锁,锁释放后,线程 B 被唤醒,线程 B 再次尝试加锁,此时是可以加锁成功的,加锁成功后,线程 B 检查 instance == null 时会发现,已经创建过 Singleton 实例了,所以线程 B 不会再创建一个 Singleton 实例。

这看上去一切都很完美,无懈可击,但实际上这个 getInstance() 方法并不完美。问题出在哪里呢?出在 new 操作上,我们以为的 new 操作应该是:

  1. 分配一块内存 M;

  2. 在内存 M 上初始化 Singleton 对象;

  3. 然后 M 的地址赋值给 instance 变量。

但是实际上优化后的执行路径却是这样的:

  1. 分配一块内存 M;

  2. 将 M 的地址赋值给 instance 变量;

  3. 最后在内存 M 上初始化 Singleton 对象。

优化后会导致什么问题呢?我们假设线程 A 先执行 getInstance() 方法,当执行完指令 2 时恰好发生了线程切换,切换到了线程 B 上;如果此时线程 B 也执行 getInstance() 方法,那么线程 B 会发现instance != null,所以直接返回 instance,而此时的 instance 是没有初始化过的,如果我们这个时候访问 instance 的成员变量就可能触发空指针异常。

并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头_第6张图片

双重检查创建单例的异常执行路径

总结

要写好并发程序,首先要知道并发程序的问题在哪里,只有确定了“靶子”,才有可能把问题解决,毕竟所有的解决方案都是针对问题的。并发程序经常出现的诡异问题看上去非常无厘头,但是深究的话,无外乎就是直觉欺骗了我们,只要我们能够深刻理解可见性、原子性、有序性在并发场景下的原理,很多并发 Bug 都是可以理解、可以诊断的

在介绍可见性、原子性、有序性的时候,特意提到缓存导致的可见性问题,线程切换带来的原子性问题,编译优化带来的有序性问题,其实缓存、线程、编译优化的目的和我们写并发程序的目的是相同的,都是提高程序性能。但是技术在解决一个问题的同时,必然会带来另外一个问题,所以在采用一项技术的同时,一定要清楚它带来的问题是什么,以及如何规避

我们这个专栏在讲解每项技术的时候,都会尽量将每项技术解决的问题以及产生的问题讲清楚,也希望你能够在这方面多思考、多总结。


你可能感兴趣的:(并发编程 | 可见性、原子性和有序性问题:并发编程Bug的源头)