arXiv每日推荐-3.24: 计算机视觉/图像处理每日论文速递

同步公众号(arXiv每日学术速递)

[检测分类相关]:
【1】 Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
基于粗到精特征自适应的跨域目标检测
作者: Yangtao Zheng, Yunhong Wang
链接:https://arxiv.org/abs/2003.10275

【2】 GeoGraph: Learning graph-based multi-view object detection with geometric cues end-to-end
Geograph:基于学习图的多视图对象检测,具有端到端的几何提示
作者: Ahmed Samy Nassar, Jan D. Wegner
链接:https://arxiv.org/abs/2003.10151

【3】 Multi-Plateau Ensemble for Endoscopic Artefact Segmentation and Detection
用于内窥镜伪影分割和检测的多平台集成
作者: Suyog Jadhav, Aryan Raj
备注:EndoCV2020 workshop ISBI 2020 camera ready
链接:https://arxiv.org/abs/2003.10129

【4】 Additive Angular Margin for Few Shot Learning to Classify Clinical Endoscopy Images
用于临床内窥镜图像分类的少数镜头学习的附加角度裕度
作者: Sharib Ali, Jens Rittscher
链接:https://arxiv.org/abs/2003.10033

【5】 COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images
COVID-NET:一种用于从胸部X光图像中检测COVID-19病例的定制深度卷积神经网络设计
作者: Linda Wang, Alexander Wong
链接:https://arxiv.org/abs/2003.09871

【6】 Large-Scale Screening of COVID-19 from Community Acquired Pneumonia using Infection Size-Aware Classification
使用感染大小识别分类法大规模筛查社区获得性肺炎中的COVID-19
作者: Feng Shi, Dinggang Shen
链接:https://arxiv.org/abs/2003.09860

【7】 Exploring Bottom-up and Top-down Cues with Attentive Learning for Webly Supervised Object Detection
利用注意学习探索自下而上和自上而下的线索用于弱监督对象检测
作者: Zhonghua Wu, Jianfei Cai
链接:https://arxiv.org/abs/2003.09790

【8】 Topological Sweep for Multi-Target Detection of Geostationary Space Objects
用于地球静止空间目标多目标检测的拓扑扫描
作者: Daqi Liu, Mark Rutten
链接:https://arxiv.org/abs/2003.09583

【9】 Coronavirus (COVID-19) Classification using CT Images by Machine Learning Methods
基于机器学习方法的CT图像冠状病毒(COVID-19)分类
作者: Mucahid Barstugan, Saban Ozturk
链接:https://arxiv.org/abs/2003.09424

【10】 Understanding the robustness of deep neural network classifiers for breast cancer screening
了解深层神经网络分类器用于乳腺癌筛查的稳健性
作者: Witold Oleszkiewicz, Krzysztof J. Geras
备注:Accepted as a workshop paper at AI4AH, ICLR 2020
链接:https://arxiv.org/abs/2003.10041

【11】 On Information Plane Analyses of Neural Network Classifiers – A Review
关于神经网络分类器的信息平面分析-综述
作者: Bernhard C. Geiger
链接:https://arxiv.org/abs/2003.0967

【12】 Ensembles of Deep Neural Networks for Action Recognition in Still Images
用于静态图像动作识别的深层神经网络集成
作者: Sina Mohammadi, Shahriar B. Shokouhi
备注:5 pages, 2 figures, 3 tables, Accepted by ICCKE 2019
链接:https://arxiv.org/abs/2003.0989

【13】 SOLOv2: Dynamic, Faster and Stronger
SOLOv2:动态、更快、更强
作者: Xinlong Wang, Chunhua Shen
链接:https://arxiv.org/abs/2003.1015

更多文章参考原文:https://zhuanlan.zhihu.com/p/115782046

你可能感兴趣的:(计算机视觉)