二进制的编码(原码、反码、补码)

二进制的编码(原码、反码、补码)

1.二进制怎么编码? 

1字节 = 8位,所以它能表示的最大数当然是8位都是1(既然2进制的数只能是0或1,如果是我们常见的10进制,那就8位都为9)1字节的二进制数中,最大的数:11111111。

这个数的大小是多少呢?让我们来把它转换为十进制数。

无论是什么进制,都是左边是高位,右边是低位。10进制是我们非常习惯的计数方式,第一位代表有几个1(即几个100),第二位代表有几个10(即几个101),第三位代表有几个100(即有几个102)…,用小学课本上的说法就是:个位上的数表示几个1,十位上的数表示向个10,百位上的数表示几个100……

同理可证,二进制数则是:第1位数表示几个1 (20),第2位数表示几个2(21),第3位数表示几个4(22),第4位数表示向个8(23)……

以前我们知道1个字节有8位,现在通过计算,我们又得知:1个字节可以表达的最大的数是255,也就是说表示0~255这256个数。

那么两个字节(双字节数)呢?双字节共16位。 1111111111111111,这个数并不大,但长得有点眼晕,从现在起,我们要学会这样来表达二制数:1111 1111 1111 1111,即每4位隔一空格。

双字节数最大值为:1 * 2^15 + 1 *2^14 + 1* 2^13 + 1 * 2^12 + 1 * 2^11 + 1 * 2^10 + …… + 1 * 2^2 + 1 * 2^1 + 1* 2^0 = 65535

很自然,我们可以想到,一种数据类型允许的最大值,和它的位数有关。具体的计算方法方法是,如果它有n位,那么最大值就是:n位二进制数的最大值:1 * 2^(n-1) + 1 * 2^(n-2) + ... + 1 * 2^0

2、理解有符号数和无符号数

负数在计算机中如何表示呢?这一点,你可能听过两种不同的回答。

一种是教科书,它会告诉你:计算机用“补码”表示负数。可是有关“补码”的概念一说就得一节课,用“补码”表示负数,其实一种公式,公式的作用在于告诉你,想得问题的答案,应该如何计算。却并没有告诉你为什么用这个公式就可以得到答案。

另一种是一些程序员告诉你的:用二进制数的最高位表示符号,最高位是0,表示正数,最高位是1,表示负数。这种说法本身没错,可是如果没有下文,那么它就是错的。至少它不能解释,为什么字符类型的-1用二进制表示是“1111 1111”(16进制为FF);而不是我们更能理解的“1000 0001”。(为什么说后者更好理解呢?因为既然说最高位是1时表示负数,那1000 0001不是正好是-1吗?)。让我们从头说起。

3、你自已决定是否需要有正负。

就像我们必须决定某个量使用整数还是实数,使用多大的范围数一样,我们必须自已决定某个量是否需要正负。如果这个量不会有负值,那么我们可以定它为带正负的类型。

在计算机中,可以区分正负的类型,称为有符类型,无正负的类型(只有正值),称为无符类型。

数值类型分为整型或实型,其中整型又分为无符类型或有符类型 (unsigned int, signed int),而实型float则只有有符类型。

字符类型也分为有符和无符类型 (unsigned char, signed char)。

4、使用二制数中的最高位表示正负。

首先得知道最高位是哪一位?1个字节的类型,如字符类型,最高位是第7位,2个字节的数,最高位是第15位,4个字节的数,最高位是第31位。不同长度的数值类型,其最高位也就不同,但总是最左边的那位(如下示意)。字符类型固定是1个字节,所以最高位总是第7位。(红色为最高位)

单字节数: 1111 1111

双字节数: 1111 1111 1111 1111

四字节数: 1111 1111 1111 1111 1111 1111 1111 1111

  • 当我们指定一个数量是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。
  • 当我们指定一个数量是有符号类型时,此时,最高数称为“符号位”。为1时,表示该数为负值,为0时表示为正值。

5、无符号数和有符号数的范围区别。

无符号数中,所有的位都用于直接表示该值的大小。有符号数中最高位用于表示正负,所以,当为正值时,该数的最大值就会变小。我们举一个字节的数值对比:

无符号数: 1111 1111   值:255         1* 2^7 + 1* 2^6 + 1* 2^5 + 1* 2^4 + 1* 2^3 + 1* 2^2 + 1* 2^1 + 1* 2^0

有符号数: 0111 1111   值:127         1* 2^6 + 1* 2^5 + 1* 2^4 + 1* 2^3 + 1* 2^2 + 1* 2^1 + 1* 2^0

同样是一个字节,无符号数的最大值是255,而有符号数的最大值是127。原因是有符号数中的最高位被挪去表示符号了。并且,我们知道,最高位的权值也是最高的(对于1字节数来说是2的7次方=128),所以仅仅少于一位,最大值一下子减半。

不过,有符号数的长处是它可以表示负数。因此,虽然它的在最大值缩水了,却在负值的方向出现了伸展。我们仍一个字节的数值对比:

无符号数:                         0 ----------------- 255                  0000 0000 ---------------1111 1111

有符号数:                  -128 --------- 0 ---------- 127             1000 0000 ----------------0111 1111

同样是一个字节,无符号的最小值是 0 ,而有符号数的最小值是-128。所以二者能表达的不同的数值的个数都一样是256个。只不过前者表达的是0到255这256个数,后者表达的是-128到+127这256个数。

6、一个有符号的数据类型的最小值是如何计算出来的呢?

有符号的数据类型的最大值的计算方法完全和无符号一样,只不过它少了一个最高位。但在负值范围内,数值的计算方法不能直接使用1* 2^6 + 1* 2^5 +...的公式进行转换。在计算机中,负数除为最高位为1以外,还采用补码形式进行表达。所以在计算其值前,需要对补码进行还原。这里,先直观地看一眼补码的形式:

以我们原有的数学经验,在10进制中:1 表示正1,而加上负号:-1 表示和1相对的负值。

那么,我们会很容易认为在2进制中(1个字节): 0000 0001 表示正1,则高位为1后:1000 0001应该表示-1。

然而,事实上计算机中的规定有些相反,请看下表:

二进制的编码(原码、反码、补码)_第1张图片

首先我们看到,从-1到-128,其二进制的最高位都是1(表中标为红色),正如我们前面的学。

然后我们有些奇怪地发现,1000 0000 并没有拿来表示 -0;而1000 0001也不是拿来直观地表示-1。事实上,-1 用1111 1111来表示。怎么理解这个问题呢?先得问一句是-1大还是-128大

当然是 -1 大。-1是最大的负整数。以此对应,计算机中无论是字符类型,或者是整数类型,也无论这个整数是几个字节。它都用全1来表示 -1。比如一个字节的数值中:1111 1111表示-1,那么,1111 1111 - 1 是什么呢?和现实中的计算结果完全一致。1111 1111 - 1 = 1111 1110,而1111 1110就是-2。这样一直减下去,当减到只剩最高位用于表示符号的1以外,其它低位全为0时,就是最小的负值了,在一字节中,最小的负值是1000 0000,也就是-128。

我们以-1为例,来看看不同字节数的整数中,如何表达-1这个数:

二进制的编码(原码、反码、补码)_第2张图片

可能有同学这时会混了:为什么 1111 1111 有时表示255,有时又表示-1?所以我再强调一下:你自已决定一个数是有符号还是无符号的。写程序时,指定一个量是有符号的,那么 当这个量的二进制各位上都是1时,它表示的数就是-1;相反,如果事选声明这个量是无符号的,此时它表示的就是该量允许的最大值,对于一个字节的数来说, 最大值就是255。 

7、个人总结

1000 0000表示-128是人为规定的,不然会有+0和-0之分

负数除最高位是1以外,还采用补码形式表达,所以在十进制计算前要对补码进行还原,即补码-1再取反。

计算机用补码表示负数:+128原码是1000 0000,反码是0111 1111,补码是0111 1111+1=1000 0000表示-128

对于有符号数:

1.  最高位四符号位,0表示整数,1表示负数

2.  正数的原码,反码,补码相同

3.  负数的反码=原码符号位不变,其他为取反

4.  负数的补码=它的反码+1

5.  0的反码,补码都是0

6.  计算机运算时,都是以补码的方式来运算的

example:1-2=1+(-2),在计算机中,1的补码:0000 0001,-2的原码:1000 0010,-2的反码:1111 1101,-2的补码:1111 1110,补码相加:0000 0001+1111 1110=1111 1111,再将结果转成原码(减1取反),减1得到反码:1111 1110,取反得到原码:1000 0001,转成原码后才能转成十进制结果:-1,-1的补码是1111 1111,1111 1111即-1在计算机中的表示。

你可能感兴趣的:(二进制的编码(原码、反码、补码))