OpenGL学习总结(八)

高级OpenGL总结(三)

六、立方体贴图

1、创建立方体贴图
a、立方体贴图和其他纹理一样,所以要创建一个立方体贴图,在进行任何纹理操作之前,需要生成一个纹理,激活相应纹理单元然后绑定到合适的纹理目标上。这次要绑定到 GL_TEXTURE_CUBE_MAP纹理类型:

GLuint textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);

由于立方体贴图包含6个纹理,立方体的每个面一个纹理,我们必须调用glTexImage2D函数6次,函数的参数和前面教程讲的相似。然而这次我们必须把纹理目标(target)参数设置为立方体贴图特定的面,这是告诉OpenGL我们创建的纹理是对应立方体哪个面的。因此我们便需要为立方体贴图的每个面调用一次 glTexImage2D。

b、由于立方体贴图有6个面,OpenGL就提供了6个不同的纹理目标,来应对立方体贴图的各个面。

GL_TEXTURE_CUBE_MAP_POSITIVE_X  右
GL_TEXTURE_CUBE_MAP_NEGATIVE_X  左
GL_TEXTURE_CUBE_MAP_POSITIVE_Y  上
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y  下
GL_TEXTURE_CUBE_MAP_POSITIVE_Z  后
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z  前

c、和很多OpenGL其他枚举一样,对应的int值都是连续增加的,所以我们有一个纹理位置的数组或vector,就能以 GL_TEXTURE_CUBE_MAP_POSITIVE_X为起始来对它们进行遍历,每次迭代枚举值加 1,这样循环所有的纹理目标效率较高:

int width,height;
unsigned char* image;  
for(GLuint i = 0; i < textures_faces.size(); i++)
{
    image = SOIL_load_image(textures_faces[i], &width, &height, 0, SOIL_LOAD_RGB);
    glTexImage2D(
        GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
        0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image
    );
}

d、这儿我们有个vector叫textures_faces,它包含立方体贴图所各个纹理的文件路径,并且以上表所列的顺序排列。它将为每个当前绑定的cubemp的每个面生成一个纹理。

由于立方体贴图和其他纹理没什么不同,我们也要定义它的环绕方式和过滤方式:

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

e、在片段着色器中,我们必须使用一个不同的采样器——samplerCube,用它来从texture函数中采样,但是这次使用的是一个vec3方向向量,取代vec2。下面是一个片段着色器使用了立方体贴图的例子:

in vec3 textureDir; // 用一个三维方向向量来表示立方体贴图纹理的坐标

uniform samplerCube cubemap;  // 立方体贴图纹理采样器

void main()
{
    color = texture(cubemap, textureDir);
}

2、具体应用——天空盒
a、加载天空盒

GLuint loadCubemap(vector<const GLchar*> faces)
{
    GLuint textureID;
    glGenTextures(1, &textureID);
    glActiveTexture(GL_TEXTURE0);

    int width,height;
    unsigned char* image;

    glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);
    for(GLuint i = 0; i < faces.size(); i++)
    {
        image = SOIL_load_image(faces[i], &width, &height, 0, SOIL_LOAD_RGB);
        glTexImage2D(
            GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0,
            GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image
        );
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glBindTexture(GL_TEXTURE_CUBE_MAP, 0);

    return textureID;
}

vector<const GLchar*> faces;
faces.push_back("right.jpg");
faces.push_back("left.jpg");
faces.push_back("top.jpg");
faces.push_back("bottom.jpg");
faces.push_back("back.jpg");
faces.push_back("front.jpg");
GLuint cubemapTexture = loadCubemap(faces);

b、显示天空盒
顶点着色器:

#version 330 core
layout (location = 0) in vec3 position;
out vec3 TexCoords;

uniform mat4 projection;
uniform mat4 view;

void main()
{
    gl_Position =   projection * view * vec4(position, 1.0);  
    TexCoords = position;
}

片断着色器:

#version 330 core
in vec3 TexCoords;
out vec4 color;

uniform samplerCube skybox;

void main()
{
    color = texture(skybox, TexCoords);
}

主程序:

glDepthMask(GL_FALSE);
skyboxShader.Use();
// ... Set view and projection matrix
glBindVertexArray(skyboxVAO);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemapTexture);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
glDepthMask(GL_TRUE);
// ... Draw rest of the scene

3、环境映射
我们现在有了一个把整个环境映射到为一个单独纹理的对象,我们利用这个信息能做的不仅是天空盒。使用带有场景环境的立方体贴图,我们还可以让物体有一个反射或折射属性。像这样使用了环境立方体贴图的技术叫做环境贴图技术,其中最重要的两个是反射(reflection)和折射(refraction)。
a、反射
凡是是一个物体(或物体的某部分)反射(Reflect)他周围的环境的属性,比如物体的颜色多少有些等于它周围的环境,这要基于观察者的角度。例如一个镜子是一个反射物体:它会基于观察者的角度泛着它周围的环境。

反射的基本思路不难。下图展示了我们如何计算反射向量,然后使用这个向量去从一个立方体贴图中采样:
OpenGL学习总结(八)_第1张图片
我们基于观察方向向量I和物体的法线向量N计算出反射向量R。我们可以使用GLSL的内建函数reflect来计算这个反射向量。最后向量R作为一个方向向量对立方体贴图进行索引/采样,返回一个环境的颜色值。最后的效果看起来就像物体反射了天空盒。

因为我们在场景中已经设置了一个天空盒,创建反射就不难了。我们改变一下箱子使用的那个片段着色器,给箱子一个反射属性:

#version 330 core
in vec3 Normal;
in vec3 Position;
out vec4 color;

uniform vec3 cameraPos;
uniform samplerCube skybox;

void main()
{
    vec3 I = normalize(Position - cameraPos);
    vec3 R = reflect(I, normalize(Normal));
    color = texture(skybox, R);
}

我们先来计算观察/摄像机方向向量I,然后使用它来计算反射向量R,接着我们用R从天空盒立方体贴图采样。要注意的是,我们有了片段的插值Normal和Position变量,所以我们需要修正顶点着色器适应它。

#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;

out vec3 Normal;
out vec3 Position;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(position, 1.0f);
    Normal = mat3(transpose(inverse(model))) * normal;
    Position = vec3(model * vec4(position, 1.0f));
}

然后在渲染箱子前我们还得绑定立方体贴图纹理:

glBindVertexArray(cubeVAO);
glBindTexture(GL_TEXTURE_CUBE_MAP, skyboxTexture);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);

b、折射
环境映射的另一个形式叫做折射(Refraction),它和反射差不多。折射是光线通过特定材质对光线方向的改变。我们通常看到像水一样的表面,光线并不是直接通过的,而是让光线弯曲了一点。它看起来像你把半只手伸进水里的效果。

折射遵守斯涅尔定律,使用环境贴图看起来就像这样:
OpenGL学习总结(八)_第2张图片
我们有个观察向量I,一个法线向量N,这次折射向量是R。就像你所看到的那样,观察向量的方向有轻微弯曲。弯曲的向量R随后用来从立方体贴图上采样。

折射可以通过GLSL的内建函数refract来实现,除此之外还需要一个法线向量,一个观察方向和一个两种材质之间的折射指数。

折射指数决定了一个材质上光线扭曲的数量,每个材质都有自己的折射指数。下表是常见的折射指数:

空气  1.00
水   1.33
冰   1.309
玻璃  1.52
宝石  2.42

我们使用这些折射指数来计算光线通过两个材质的比率。在我们的例子中,光线/视线从空气进入玻璃(如果我们假设箱子是玻璃做的)所以比率是1.00/1.52 = 0.658。

我们已经绑定了立方体贴图,提供了定点数据,设置了摄像机位置的uniform。现在只需要改变片段着色器:

void main()
{
    float ratio = 1.00 / 1.52;
    vec3 I = normalize(Position - cameraPos);
    vec3 R = refract(I, normalize(Normal), ratio);
    color = texture(skybox, R);
}

你可能感兴趣的:(OpenGL学习总结)