Tiny-SSD : 使用Squeeze-Net 替换 VGG-16

前言:这个作者的思路没什么,改了个网络而已,但是没想到他里面的参数只是随便写的,并不是完全成立,而如果将这些参数设计成SSD 中VGG16的,则可以正确的编译(很难受),把网络留在这里,可以直接替换VGG16部分。最近准备使用kitti数据集进行测试和yolo V3比较

# coding=utf-8
"""Keras implementation of SSD."""

import keras.backend as K
from keras.layers import Activation
from keras.layers import AtrousConvolution2D
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import GlobalAveragePooling2D
from keras.layers import Input
from keras.layers import MaxPooling2D
from keras.layers import merge
from keras.layers import Reshape
from keras.layers import ZeroPadding2D
from keras.models import Model, Sequential

from ssd_layers import Normalize
from ssd_layers import PriorBox

from keras.models import Sequential
from keras.layers import Dense, Flatten, Dropout, Concatenate
from keras.layers.convolutional import Conv2D, MaxPooling2D
import numpy as np


def SqueezeNet(inputs, nb_classes=21):
    """ Keras Implementation of SqueezeNet(arXiv 1602.07360)
    @param nb_classes: total number of final categories
    Arguments:
    inputs -- shape of the input images (channel, cols, rows)
    """
    img_size = (inputs[0], inputs[1])
    input_img = (Input(shape=inputs))
    conv1 = Conv2D(
        64, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        strides=(1, 1), name='conv1', padding='same',
        data_format="channels_last")(input_img)
    # maxpool1
    maxpool1 = MaxPooling2D(
        pool_size=(2, 2), strides=(2, 2), name='maxpool1',
        data_format="channels_last")(conv1)

    # fire1
    fire1_squeeze = Conv2D(
        15, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire1_squeeze',
        data_format="channels_last")(maxpool1)
    fire1_expand1 = Conv2D(
        49, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire1_expand1',
        data_format="channels_last")(fire1_squeeze)
    fire1_expand2 = Conv2D(
        53, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire1_expand2',
        data_format="channels_last")(fire1_squeeze)
    merge1 = Concatenate(axis=3)([fire1_expand1, fire1_expand2])

    maxpool2 = MaxPooling2D(
        pool_size=(2, 2), strides=(2, 2), name='maxpool2',
        data_format="channels_last")(merge1)

    # fire2
    fire2_squeeze = Conv2D(
        15, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire2_squeeze',
        data_format="channels_last")(maxpool2)
    fire2_expand1 = Conv2D(
        54, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire2_expand1',
        data_format="channels_last")(fire2_squeeze)
    fire2_expand2 = Conv2D(
        52, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire2_expand2',
        data_format="channels_last")(fire2_squeeze)
    merge2 = Concatenate(axis=3)([fire2_expand1, fire2_expand2])

    # maxpool3
    maxpool3 = MaxPooling2D(
        pool_size=(3, 3), strides=(2, 2), padding='same', name='maxpool3',
        data_format="channels_last")(merge2)

    # fire3
    fire3_squeeze = Conv2D(
        29, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire3_squeeze',
        data_format="channels_last")(maxpool3)
    fire3_expand1 = Conv2D(
        92, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire3_expand1',
        data_format="channels_last")(fire3_squeeze)
    fire3_expand2 = Conv2D(
        94, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire3_expand2',
        data_format="channels_last")(fire3_squeeze)
    merge3 = Concatenate(axis=3)([fire3_expand1, fire3_expand2])

    # fire4
    fire4_squeeze = Conv2D(
        29, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire4_squeeze',
        data_format="channels_last")(merge3)
    fire4_expand1 = Conv2D(
        90, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire4_expand1',
        data_format="channels_last")(fire4_squeeze)
    fire4_expand2 = Conv2D(
        83, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire4_expand2',
        data_format="channels_last")(fire4_squeeze)
    merge4 = Concatenate(axis=3)([fire4_expand1, fire4_expand2])

    # maxpool4
    maxpool4 = MaxPooling2D(
        pool_size=(2, 2), strides=(2, 2), name='maxpool4', padding='same',
        data_format="channels_last")(merge4)

    # fire5
    fire5_squeeze = Conv2D(
        44, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire5_squeeze',
        data_format="channels_last")(maxpool4)
    fire5_expand1 = Conv2D(
        166, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire5_expand1',
        data_format="channels_last")(fire5_squeeze)
    fire5_expand2 = Conv2D(
        161, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire5_expand2',
        data_format="channels_last")(fire5_squeeze)
    merge5 = Concatenate(axis=3)([fire5_expand1, fire5_expand2])

    # fire6
    fire6_squeeze = Conv2D(
        45, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire6_squeeze',
        data_format="channels_last")(merge5)
    fire6_expand1 = Conv2D(
        155, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire6_expand1',
        data_format="channels_last")(fire6_squeeze)
    fire6_expand2 = Conv2D(
        146, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire6_expand2',
        data_format="channels_last")(fire6_squeeze)
    merge6 = Concatenate(axis=3)([fire6_expand1, fire6_expand2])

    # fire7
    fire7_squeeze = Conv2D(
        49, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire7_squeeze',
        data_format="channels_last")(merge6)
    fire7_expand1 = Conv2D(
        163, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire7_expand1',
        data_format="channels_last")(fire7_squeeze)
    fire7_expand2 = Conv2D(
        171, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire7_expand2',
        data_format="channels_last")(fire7_squeeze)
    merge7 = Concatenate(axis=3)([fire7_expand1, fire7_expand2])

    # fire8
    fire8_squeeze = Conv2D(
        25, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire8_squeeze',
        data_format="channels_last")(merge7)
    fire8_expand1 = Conv2D(
        29, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire8_expand1',
        data_format="channels_last")(fire8_squeeze)
    fire8_expand2 = Conv2D(
        54, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire8_expand2',
        data_format="channels_last")(fire8_squeeze)
    merge8 = Concatenate(axis=3)([fire8_expand1, fire8_expand2])

    # maxpool9
    maxpool9 = MaxPooling2D(
        pool_size=(3, 3), strides=(2, 2), padding='same', name='maxpool9',
        data_format="channels_last")(merge8)

    # fire9
    fire9_squeeze = Conv2D(
        37, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        name='fire9_squeeze',
        data_format="channels_last")(maxpool9)
    fire9_expand1 = Conv2D(
        45, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire9_expand1',
        data_format="channels_last")(fire9_squeeze)
    fire9_expand2 = Conv2D(
        56, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire9_expand2',
        data_format="channels_last")(fire9_squeeze)
    merge9 = Concatenate(axis=3)([fire9_expand1, fire9_expand2])

    # maxpool10
    maxpool10 = MaxPooling2D(
        pool_size=(2, 2), strides=(2, 2), name='maxpool10',
        data_format="channels_last")(merge9)

    # fire10
    fire10_squeeze = Conv2D(
        38, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire10_squeeze',
        data_format="channels_last")(maxpool10)
    fire10_expand1 = Conv2D(
        41, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire10_expand1',
        data_format="channels_last")(fire10_squeeze)
    fire10_expand2 = Conv2D(
        44, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='fire10_expand2',
        data_format="channels_last")(fire10_squeeze)
    merge10 = Concatenate(axis=3)([fire10_expand1, fire10_expand2])

    # cov12-1
    conv12_1 = Conv2D(
        51, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', strides=(2, 2), name='conv12_1',
        data_format='channels_last')(merge10)
    # padding_1
    padding_1 = ZeroPadding2D((1, 1), data_format='channels_last')(conv12_1)

    # conv12_2
    conv12_2 = Conv2D(
        46, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        name='conv12_2',
        data_format='channels_last')(padding_1)

    # conv13_1
    conv13_1 = Conv2D(
        55, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        padding='same', name='conv13_1',
        data_format='channels_last')(conv12_2)

    # padding_2
    # padding_2 = ZeroPadding2D((1,1),data_format='channels_last')(conv13_1)

    # conv13_2
    conv13_2 = Conv2D(
        85, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
        name='conv13_2',
        data_format='channels_last')(conv13_1)

    # Prediction from Fire4
    num_priors = 3
    fire4_norm = Normalize(20, name='fire4_norm')(merge4)
    fire4_norm_mbox_loc = Conv2D(
        num_priors*4, (3, 3), name='fire4_norm_mbox_loc', padding='same',
        data_format='channels_last')(fire4_norm)
    fire4_mbox_norm_loc_flat = Flatten()(fire4_norm_mbox_loc)

    name = 'fire4_norm_mbox_conf'
    if nb_classes != 21:
        name += '_{}'.format(nb_classes)
    fire4_norm_mbox_conf = Conv2D(
        num_priors*nb_classes, (3, 3), name=name, padding='same',
        data_format='channels_last')(fire4_norm)
    fire4_norm_mbox_conf_flat = Flatten()(fire4_norm_mbox_conf)

    fire4_norm_mbox_priorbox = PriorBox(img_size, 30.0, aspect_ratios=[2],
                                        variances=[0.1, 0.1, 0.2, 0.2],
                                        name='fire4_norm_mbox_priorbox')(fire4_norm)
    fire4_priorbox_flatten = Flatten()(fire4_norm_mbox_priorbox)

    # Prediction from Fire8
    num_priors = 6
    fire8_mbox_loc = Conv2D(
        num_priors*4, (3, 3), name='fire8_mbox_loc', padding='same',
        data_format='channels_last')(merge8)
    fire8_mbox_loc_flat = Flatten()(fire8_mbox_loc)

    name = 'fire8_mbox_conf'
    if nb_classes != 21:
        name += '_{}'.format(nb_classes)
    fire8_mbox_conf = Conv2D(
        num_priors*nb_classes, (3, 3), name=name, padding='same',
        data_format='channels_last')(merge8)
    fire8_mbox_conf_flat = Flatten()(fire8_mbox_conf)

    fire8_mbox_priorbox = PriorBox(img_size, 60.0, max_size=114.0, aspect_ratios=[2, 3],
                                   variances=[0.1, 0.1, 0.2, 0.2],
                                   name='fire8_mbox_priorbox')(merge8)

    # Prediction from Fire9
    num_priors = 6
    fire9_mbox_loc = Conv2D(
        num_priors*4, (3, 3), name='fire9_mbox_loc', padding='same',
        data_format='channels_last')(merge9)
    fire9_mbox_loc_flat = Flatten()(fire9_mbox_loc)

    name = 'fire9_mbox_conf'
    if nb_classes != 21:
        name += '_{}'.format(nb_classes)
    fire9_mbox_conf = Conv2D(
        num_priors*nb_classes, (3, 3), name=name, padding='same',
        data_format='channels_last')(merge9)
    fire9_mbox_conf_flat = Flatten()(fire9_mbox_conf)

    fire9_mbox_priorbox = PriorBox(img_size, 114.0, max_size=168.0, aspect_ratios=[2, 3],
                                   variances=[0.1, 0.1, 0.2, 0.2],
                                   name='fire9_mbox_priorbox')(merge9)

    # Prediction from Fire10
    num_priors = 6
    fire10_mbox_loc = Conv2D(
        num_priors*4, (3, 3), name='fire10_mbox_loc', padding='same',
        data_format='channels_last')(merge10)
    fire10_mbox_loc_flat = Flatten()(fire10_mbox_loc)

    name = 'fire10_mbox_conf'
    if nb_classes != 21:
        name += '_{}'.format(nb_classes)
    fire10_mbox_conf = Conv2D(
        nb_classes*num_priors, (3, 3), name=name, padding='same',
        data_format='channels_last')(merge10)
    fire10_mbox_conf_flat = Flatten()(fire10_mbox_conf)

    fire10_mbox_priorbox = PriorBox(img_size, 168.0, max_size=222.0, aspect_ratios=[2, 3],
                                    variances=[0.1, 0.1, 0.2, 0.2],
                                    name='fire10_mbox_priorbox')(merge10)

    # Prediction from Conv12_2
    num_priors = 6
    conv12_maxpool = MaxPooling2D(pool_size=(1, 1), data_format="channels_last")(conv12_2)
    conv12_mbox_loc = Conv2D(
        num_priors*4, (3, 3), name='conv12_mbox_loc', padding='same',
        data_format='channels_last')(conv12_maxpool)
    conv12_mbox_loc_flat = Flatten()(conv12_mbox_loc)

    name = 'conv12_mbox_conf'
    if nb_classes != 21:
        name += '_{}'.format(nb_classes)
    conv12_mbox_conf = Conv2D(
        num_priors*nb_classes, (3, 3), name=name, padding='same',
        data_format='channels_last')(conv12_maxpool)
    conv12_mbox_conf_flat = Flatten()(conv12_mbox_conf)

    conv12_mbox_priorbox = PriorBox(img_size, 222.0, max_size=276.0, aspect_ratios=[2, 3],
                                    variances=[0.1, 0.1, 0.2, 0.2],
                                    name='conv12_mbox_priorbox')(conv12_maxpool)
    # pool6
    # pool6 = GlobalAveragePooling2D(name='pool6')(conv8_2)

    # Prediction from Conv13_2
    conv13_maxpool = MaxPooling2D(pool_size=(1, 1), data_format="channels_last")(conv13_2)
    num_priors = 6
    conv13_mbox_loc = Conv2D(
        num_priors*4, (3, 3), name='conv13_mbox_loc', padding='same',
        data_format='channels_last')(conv13_maxpool)
    conv13_mbox_loc_flat = Flatten()(conv13_mbox_loc)

    name = 'conv13_mbox_conf'
    if nb_classes != 21:
        name += '_{}'.format(nb_classes)
    conv13_mbox_conf = Conv2D(
        num_priors*nb_classes, (3, 3), name=name, padding='same',
        data_format='channels_last')(conv13_maxpool)
    conv13_mbox_conf_flat = Flatten()(conv13_mbox_conf)

    conv13_mbox_priorbox = PriorBox(img_size, 276.0, max_size=330.0, aspect_ratios=[2, 3],
                                    variances=[0.1, 0.1, 0.2, 0.2],
                                    name='conv13_mbox_priorbox')(conv13_maxpool)

    # Gather all predictions
    mbox_loc = Concatenate(axis=1)([fire4_mbox_norm_loc_flat,
                                    fire8_mbox_loc_flat,
                                    fire9_mbox_loc_flat,
                                    fire10_mbox_loc_flat,
                                    conv12_mbox_loc_flat,
                                    conv13_mbox_loc_flat])
    mbox_conf = Concatenate(axis=1)([fire4_norm_mbox_conf_flat,
                                     fire8_mbox_conf_flat,
                                     fire9_mbox_conf_flat,
                                     fire10_mbox_conf_flat,
                                     conv12_mbox_conf_flat,
                                     conv13_mbox_conf_flat])

    # fire4_mbox_priorbox_reshape = Reshape((-1,8),name = ' fire4_mbox_priorbox_reshape')(fire4_norm_mbox_priorbox)


    mbox_priorbox = Concatenate(axis=1)([fire4_norm_mbox_priorbox,
                                         fire8_mbox_priorbox,
                                         fire9_mbox_priorbox,
                                         fire10_mbox_priorbox,
                                         conv12_mbox_priorbox,
                                         conv13_mbox_priorbox])

    # dense = Dense(4096,activation='relu')(flatten_bbox)
    num_boxes = mbox_loc._keras_shape[-1] // 4
    if hasattr(mbox_loc, '_keras_shape'):
        num_boxes = mbox_loc._keras_shape[-1] // 4
    elif hasattr(mbox_loc, 'int_shape'):
        num_boxes = K.int_shape(mbox_loc)[-1] // 4

    mbox_loc_final = Reshape((num_boxes, 4), name='mbox_loc_final')(mbox_loc)
    mbox_conf_logits = Reshape((num_boxes, nb_classes), name='mbox_conf_logits')(mbox_conf)
    mbox_conf_final = Activation('softmax', name='mbox_conf_final')(mbox_conf_logits)

    predictions = Concatenate(axis=2, name='preditions')([mbox_loc_final, mbox_conf_final, mbox_priorbox])

    return Model(inputs=input_img, outputs=predictions)

测试函数:

    model = SqueezeNet((300,300,3), 4)
    model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])
    model.summary()

你可能感兴趣的:(机器学习笔记)