Sherman-Morrison-Woodbury公式的证明

首先证明Sherman-Morrison公式:

 

(A+uvT)−1=A−1−A−1u(1+vTA−1u)−1vTA−1                                                                                                            (1)


其中,A∈Rn×n非奇异,即A-1存在,u∈Rn,v∈Rn。SM公式看似复杂,但可以通过求解以下线性方程组来推导出来:

 

(A+uvT)x=b                                                                                                                                                               (2)


式(2)两边同时乘以A-1,令 A-1u=z 和 A-1b=y,则有:

 

x+zvTx=y                                                                                                                                                                  (3)


注意到vTx是标量,令α=vTx。式(3)两边同时乘以vT,得:

 

α+vTzα=vTy                                                                                                                                                             (4)


由于式(4)中vTz和vTy都是标量,从而由式(4)可解得:

 

α=vTy1+vTz                                                                                                                                                             (5)


由式(3)和y、z、α的定义可得:

 

x=y−αz=A−1b−A−1u(1+vTA−1u)−1vTA−1b=[A−1−A−1u(1+vTA−1u)−1vTA−1]b                                                    (6)


由(2)和(6)即可得Sherman-Morrison公式,即(1)。

 

由Sherman-Morrison公式,并令U∈Rn×k,V∈Rn×k ,可得:

 

(A+UVT)−1=A−1−A−1U(I+VTA−1U)−1VTA−1                                                                                                        (7)


上式即为Sherman-Morrison-Woodbury公式。可以看到,Sherman-Morrison公式是Sherman-Morrison-Woodbury公式在k=1时的特殊情形。

 

如何证明Sherman-Morrison-Woodbury公式?式(7)两边同时乘以(A+UVT),并证明两边均等于单位矩阵I即可。

 

你可能感兴趣的:(数学知识)