【数据结构】图

1.存储结构:

  • 邻接矩阵
  • 邻接表

2.图的遍历:

  • 深度优先遍历
  • 广度优先遍历

3.算法实现:
定义图的抽象数据类型(ADT):

public interface IGraph{
    public int getNumOfVertex(); //获取顶点的个数
    boolean insertVex(E v); //插入顶点
    boolean deleteVex(E v); //删除顶点
    int indexOfVex(E v); //定位顶点的位置
    E valueOfVex(int v); //定位指定位置的顶点
    boolean insertEdge(int v1, int v2, int weight); //插入边
    boolean deleteEdge(int v1, int v2); //删除边
    public int getEdge(int v1, int v2); //查找边
    String dfs(int v);  //深度优先遍历
    String bfs(int v); //广度优先遍历
}

邻接矩阵存储:

public class GraphAdjMatrix implements IGraph{

    private E[] vexs; //存储图的顶点的一维数组
    private int[][] edges; //存储图的边的二维数组
    private int numOfVexs; //顶点的实际数量
    private int maxNumOfVexs; //顶点的最大数量
    private boolean[] visited; //判断顶点是否被访问过

    @SuppressWarnings("unchecked")
    public GraphAdjMatrix(int maxNumOfVexs, Class type) {
        this.maxNumOfVexs = maxNumOfVexs;
        edges = new int[maxNumOfVexs][maxNumOfVexs];
        vexs = (E[]) Array.newInstance(type, maxNumOfVexs);
    }

    //得到顶点的数目
    @Override
    public int getNumOfVertex() {
        return numOfVexs;
    }

    //插入顶点
    @Override
    public boolean insertVex(E v) {
        if(numOfVexs >= maxNumOfVexs){
            return false;
        }
        vexs[numOfVexs++] = v;
        return true;
    }

    //删除顶点
    @Override
    public boolean deleteVex(E v) {
        for(int i = 0; i < numOfVexs; i++){
            if(vexs[i].equals(v)){
                for(int j = i; j < numOfVexs - 1; j++){
                    vexs[j] = vexs[j + 1];
                }
                vexs[numOfVexs - 1] = null;
                for (int col = i; col < numOfVexs - 1; col++){
                    for(int row = 0; row < numOfVexs; row++){
                        edges[col][row] = edges[col + 1][row];
                    }
                }
                for(int row = i; row < numOfVexs -1; row++){
                    for(int col = 0; col < numOfVexs; col++){
                        edges[col][row] = edges[col][row + 1];
                    }
                }
                numOfVexs--;
                return true;
            }
        }
        return false;
    }

    //定位顶点的位置
    @Override
    public int indexOfVex(E v) {
        for (int i = 0; i < numOfVexs; i++){
            if(vexs[i].equals(v)){
                return i;
            }
        }
        return -1;
    }

    //定位指定位置的顶点
    @Override
    public E valueOfVex(int v) {
        if(v < 0 || v >= numOfVexs){
            return null;
        }
        return vexs[v];
    }

    //插入边
    @Override
    public boolean insertEdge(int v1, int v2, int weight) {
        if(v1 < 0 || v2 < 0 || v1 >= numOfVexs || v2 >= numOfVexs){
            throw new ArrayIndexOutOfBoundsException();
        }
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        return true;
    }

    //删除边
    @Override
    public boolean deleteEdge(int v1, int v2) {
        if(v1 < 0 || v2 < 0 || v1 >= numOfVexs || v2 >= numOfVexs){
            throw new ArrayIndexOutOfBoundsException();
        }
        edges[v1][v2] = 0;
        edges[v2][v1] = 0;
        return true;
    }

    //查找边
    @Override
    public int getEdge(int v1, int v2) {
        if(v1 < 0 || v2 < 0 || v1 >= numOfVexs || v2 >= numOfVexs){
            throw new ArrayIndexOutOfBoundsException();
        }
        return edges[v1][v2];
    }

    //深度优先遍历
    @Override
    public String dfs(int v) {
        if(v < 0 || v > numOfVexs){
            throw new ArrayIndexOutOfBoundsException();
        }
        visited = new boolean[numOfVexs];
        StringBuilder sb = new StringBuilder();
        Stack stack = new Stack<>();
        stack.push(v);
        visited[v] = true;
        while (!stack.isEmpty()){
            v = stack.pop();
            sb.append(vexs[v] + ",");
            for(int i = numOfVexs - 1; i >= 0; i--){
                if((edges[v][i] != 0 && edges[v][i] != Integer.MAX_VALUE) && !visited[i]){
                    stack.push(i);
                    visited[i] = true;
                }
            }
        }
        return sb.length() > 0 ? sb.substring(0, sb.length() - 1) : null;
    }

    //广度优先搜素
    @Override
    public String bfs(int v) {
        if (v < 0 || v >= numOfVexs){
            throw new ArrayIndexOutOfBoundsException();
        }
        visited = new boolean[numOfVexs];
        StringBuilder sb = new StringBuilder();
        Queue queue = new LinkedList<>();
        queue.offer(v);
        visited[v] = true;
        while (!queue.isEmpty()){
            v = queue.poll();
            sb.append(vexs[v] + ",");
            for (int i = 0; i < numOfVexs; i++){
                if((edges[v][i] != 0 && edges[v][i] != Integer.MAX_VALUE) && !visited[i]){
                    queue.offer(i);
                    visited[i] = true;
                }
            }
        }
        return sb.length() > 0 ? sb.substring(0, sb.length() - 1) : null;
    }
}

测试类:

public class TestGraphAdjMatrix {
    public static void main(String[] args) {
        String[] vexs = {"v1", "v2", "v3", "v4", "v5", "v6"};
        int[][] edges =
                {   {0, 20, 0, 10, 0, 0},
                    {20, 0, 10, 0, 0, 35},
                    {0, 10, 0, 20, 25, 5},
                    {10, 0, 20, 0, 15, 0},
                    {0, 0, 25, 15, 0, 0},
                    {0, 35, 5, 0, 0, 0}
                };
        IGraph graph = new GraphAdjMatrix(10,String.class);
        Scanner sc = new Scanner(System.in);
        System.out.println("---------------------------------");
        System.out.println("操作选项菜单");
        System.out.println("1.添加顶点:");
        System.out.println("2.添加边:");
        System.out.println("3.显示邻接表:");
        System.out.println("4.删除顶点:");
        System.out.println("5.删除边:");
        System.out.println("6.深度优先遍历:");
        System.out.println("7.广度优先遍历:");
        System.out.println("0.退出:");
        System.out.println("---------------------------------");
        char ch;
        do{
            System.out.print("请输入操作选项:");
            ch = sc.next().charAt(0);
            switch (ch){
                case '1':
                    for (int i = 0; i < vexs.length; i++){
                        graph.insertVex(vexs[i]);
                    }
                    System.out.println("添加顶点完成!");
                    break;
                case '2':
                    for (int i = 0; i < edges.length; i++) {
                        for (int j = i + 1; j < edges.length; j++) {
                            if (edges[i][j] != 0) {
                                graph.insertEdge(i, j, edges[i][j]);
                            }
                        }
                    }
                        System.out.println("添加边完成!");
                    break;
                case '3':
                    int numOfVertex = graph.getNumOfVertex();
                    if(numOfVertex == 0){
                        System.out.println("图还没有创建!");
                        return;
                    }
                    System.out.println("该图的邻接矩阵是:");
                    for (int i = 0; i < numOfVertex; i++) {
                        System.out.print(graph.valueOfVex(i) + "\t");
                    }
                    System.out.println();
                    for (int i = 0; i < graph.getNumOfVertex(); i++){
                        for (int j = 0; j < graph.getNumOfVertex(); j++){
                            System.out.print(graph.getEdge(i, j) + "\t");
                        }
                        System.out.println("");
                    }
                    break;
                case '4':
                    System.out.print("请输入要删除顶点的名称:");
                    String vex = sc.next();
                    graph.deleteVex(vex);
                    System.out.println(vex + "删除成功!");
                    break;
                case '5':
                    System.out.print("请输入要删除边的第一个的顶点的名称:");
                    String vex1 = sc.next();
                    System.out.print("请输入要删除边的第二个的顶点的名称:");
                    String vex2 = sc.next();
                    graph.deleteEdge(graph.indexOfVex(vex1), graph.indexOfVex(vex2));
                    System.out.println(vex1 + "与" + vex2 + "之间的边被删除");
                    break;
                case '6':
                    System.out.print("请输入出发的顶点名称:");
                    vex = sc.next();
                    String path = graph.dfs(graph.indexOfVex(vex));
                    System.out.print("深度优先遍历的结果是:");
                    System.out.println(path);
                    break;
                case '7':
                    System.out.print("请输入出发的顶点名称:");
                    vex = sc.next();
                    String path1 = graph.bfs(graph.indexOfVex(vex));
                    System.out.print("广度优先遍历的结果是:");
                    System.out.println(path1);
                    break;
            }
        }while (ch != '0');
        sc.close();
    }
}

结果:
【数据结构】图_第1张图片
4.总结:

  • 图的深度优先搜索使用压栈出栈操作实现
  • 图的广度优先搜索可以使用队列实现

参考书目:数据结构(java版)

你可能感兴趣的:(数据结构与算法)