由于hivesql中查询语句时,常用查询条件比较多,所以专门写一篇博文对HiveQL的查询语句进行总结,理清联系和区别。
目录
1. where子句(不能跟别名)
(1)比较运算符
(2)like和rlike(正则匹配)
(3)逻辑运算符and or not
2. group by子句(每...)
3. having子句(只用于group by之后)
4. join子句(A join B on A.key = B.key where X.key is null)
(1)A join B on A.字段 = B.字段,连接两张表
(2)内连接(求交集)
(3)左外连接(求左表独有)
(4)右外连接(求右表独有)
(5)全外连接(求并集)
(6)去重全外连接(求并集并且去除交集部分)
(7)多表连接
(8)笛卡尔积
where子句使用一般紧接from tablename,并且where子句中不能使用字段别名。
select ~ from tablename where语句
< > = !
is null
is not null;
A (not) between B and C:A介于[B,C]之间;
A in (B ,C):使用in运算列表中的值,即查询A=B、A=C的情况;
%代表任意个字符,通配符;_代表一个字符
A (not) like 'x%':A必须以x开头
A (not) like '%x':A必须以x结尾
A (not) like '%x%':A必须包含x
A (not) like ‘_5%’:A第2位数是5
A rlike '[Java正则表达式]'
ps:必须加单引号
同时查询两个字段,逻辑并、逻辑或、逻辑否
group by子句通常和聚合函数一起使用,后接分组字段,分组后对每个组进行聚合操作
一般用于需求中要求每个XXX,便对该XXX字段进行group by分组。
计算emp表中每个部门每个岗位的最高薪水
0: jdbc:hive2://hadoop100:10000> select deptno,job,max(sal) max_sal from emp group by deptno,job;
+---------+------------+----------+--+
| deptno | job | max_sal |
+---------+------------+----------+--+
| 10 | CLERK | 1300.0 |
| 10 | MANAGER | 2450.0 |
| 10 | PRESIDENT | 5000.0 |
| 20 | ANALYST | 3000.0 |
| 20 | CLERK | 1100.0 |
| 20 | MANAGER | 2975.0 |
| 30 | CLERK | 950.0 |
| 30 | MANAGER | 2850.0 |
| 30 | SALESMAN | 1600.0 |
+---------+------------+----------+--+
ps:groupby,对多行聚合后输出一行的结果;若没有max(col)、collect_set(col)、concat_ws('~',col)等行转列,即多行变一行的sql条件,是没法聚合的会报错。
having只用于group by子句后,给分组字段添加条件;
group by 字段 having 子句:每个[满足一定条件(having条件)的]XXX。
求每个部门的平均薪水大于2000的部门
0: jdbc:hive2://hadoop100:10000> select deptno,avg(sal) avg_sal from emp group by deptno having avg_sal>2000;
+---------+---------------------+--+
| deptno | avg_sal |
+---------+---------------------+--+
| 10 | 2916.6666666666665 |
| 20 | 2175.0 |
+---------+---------------------+--+
例如两张hive表,员工表emp和部门表dept,通过deptno来串联
要求:根据员工表和部门表中的部门编号,查询员工编号、员工名称和部门名称
0: jdbc:hive2://hadoop100:10000> select e.empno,e.ename,d.dname from emp e join dept d on e.deptno = d.deptno;
+----------+----------+-------------+--+
| e.empno | e.ename | d.dname |
+----------+----------+-------------+--+
| 7369 | SMITH | RESEARCH |
| 7499 | ALLEN | SALES |
| 7521 | WARD | SALES |
| 7566 | JONES | RESEARCH |
| 7654 | MARTIN | SALES |
| 7698 | BLAKE | SALES |
| 7782 | CLARK | ACCOUNTING |
| 7788 | SCOTT | RESEARCH |
| 7839 | KING | ACCOUNTING |
| 7844 | TURNER | SALES |
| 7876 | ADAMS | RESEARCH |
| 7900 | JAMES | SALES |
| 7902 | FORD | RESEARCH |
| 7934 | MILLER | ACCOUNTING |
+----------+----------+-------------+--+
select * from A a
join B b
on a.key = b.key;
select * from A a
left join B b
on a.key = b.key
where b.key is null;
select * from A a
left join B b
on a.key = b.key
where a.key is null;
select * from A a
full join B b
on a.key = b.key;
select * from A a
full join B b
on a.key = b.key
where a.key is null or b.key is null;
select a.name, b.name, c.name
from A a
join B b
on a.key1 = b.key1
join C c
on a.key2 = c.key2;
ps:hive从左到右顺序执行,多表连接join顺序也是按照查询字段从上到下。
0: jdbc:hive2://hadoop100:10000> select empno,dname from emp, dept;