- 深入理解 MultiQueryRetriever:提升向量数据库检索效果的强大工具
nseejrukjhad
数据库python
深入理解MultiQueryRetriever:提升向量数据库检索效果的强大工具引言在人工智能和自然语言处理领域,高效准确的信息检索一直是一个关键挑战。传统的基于距离的向量数据库检索方法虽然广泛应用,但仍存在一些局限性。本文将介绍一种创新的解决方案:MultiQueryRetriever,它通过自动生成多个查询视角来增强检索效果,提高结果的相关性和多样性。MultiQueryRetriever的工
- python比较字符串是否一样,Python如何确定两个字符串是否相同
鲁东学子
python比较字符串是否一样
I'vetriedtounderstandwhenPythonstringsareidentical(akasharingthesamememorylocation).Howeverduringmytests,thereseemstobenoobviousexplanationwhentwostringvariablesthatareequalsharethesamememory:importsy
- KMP-看毛片算法
无休居士
数据结构
#include#includevoidinsert(int*arr,inta,intn){/*0到n-1都已排好序*/inti;intkey=a;for(i=0;i=i;j--){arr[j+1]=arr[j];}arr[i]=key;return;}}arr[n]=key;return;}voidsort(int*arr,intsize){if(size<2)return;inti;for(i
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- nvm下载node报错: Error retrieving “http://npm.taobao.org/mirrors/node/latest/SHASUMS256.txt“: HTTP Statu
你不讲 wood
javascript开发语言前端node.js
nvm下载node报错:Errorretrieving“http://npm.taobao.org/mirrors/node/latest/SHASUMS256.txt”:HTTPStatus404使用nvm下载node出现以下报错:原因是淘宝镜像源已经下架,所以访问资源报404错误找到nvm安装的路径:修改setting.txt配置文件为以下内容:root:D:\NVM_node\nvmpath
- python并发与并行(十一) ———— 让asyncio的事件循环保持畅通,以便进一步提升程序的响应能力
bug404_
python并发与并行python开发语言
前一篇blog说明了怎样把采用线程所实现的项目逐步迁移到asyncio方案上面。迁移后的run_tasks协程,可以将多份输入文件通过tail_async协程正确地合并成一份输出文件。importasyncio#OnWindows,aProactorEventLoopcan'tbecreatedwithin#threadsbecauseittriestoregistersignalhandlers
- KMP模式匹配的java实现
星月梦瑾
codejava算法开发语言
importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){try(Scanners=newScanner(System.in)){Stringt=s.nextLine();Stringp=s.nextLine();solveMethod(t,p);}}privatestaticvoidsolveMethod
- 说说百度大模型算法工程师二面经历
AI小白熊
百度算法人工智能大模型面试ai自然语言处理
百度大模型算法工程师面试题应聘岗位:百度大模型算法工程师面试轮数:第二轮整体面试感觉:偏简单面试过程回顾1.自我介绍在自我介绍环节,我清晰地阐述了个人基本信息、教育背景、工作经历和技能特长,展示了自信和沟通能力。2.Leetcode题具体题意记不清了,但是类似【208.实现Trie(前缀树)】题目内容Trie(发音类似“try”)或者说前缀树是一种树形数据结构,用于高效地存储和检索字符串数据集中的
- 茴香豆:搭建RAG 智能助理
不才妹妹
人工智能windowslinux
RAGRAG(RetrievalAugmentedGeneration)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决LLMs在处理知识密集型任务时可能遇到的挑战,如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。1.在茴香豆Web版中创建自己领域的知识问答助手1.1配置镜像环境进入开发机后,从官方环境复制运行I
- OPENAI中RAG实现原理以及示例代码用PYTHON来实现
dzend
aigcpython开发语言ai
OPENAI中RAG实现原理以及示例代码用PYTHON来实现1.引言在当今人工智能领域,自然语言处理(NLP)是一个非常重要的研究方向。近年来,OPENAI发布了许多创新的NLP模型,其中之一就是RAG(Retrieval-AugmentedGeneration)模型。RAG模型结合了检索和生成两种方法,可以用于生成与给定问题相关的高质量文本。本文将介绍RAG模型的实现原理,并提供使用Python
- langchain `as_retriever` 方法
大多_C
langchainjava服务器
as_retriever方法是一个用于将VectorStore对象转换为VectorStoreRetriever对象的便捷方法。VectorStoreRetriever是一个检索类,用于从向量存储中查找和检索最相关的文档。这个方法接受多个可选参数来配置检索的行为。用法介绍参数search_type(Optional[str]):定义检索器应该执行的搜索类型。选项包括:"similarity":默认
- Django 缓存
weixin_43640594
django缓存python
缓存⑴数据库缓存settings中添加CACHES={'default':{'BACKEND':'django.core.cache.backends.db.DatabaseCache','LOCATION':'my_cache_table','TIMEOUT':300,'OPTIONS':{'MAX_ENTRIES':300,'CULL_FREQUENCY':2,}}}参数说明BACKEND引擎
- CURD是啥?
蟹堡王首席大厨
最近在看一些关于后台开发相关的文章的时候,一时想不起来CURD是啥?,上网搜了搜:crud是指在做计算处理时的增加(Create)、读取(Retrieve)、更新(Update)和删除(Delete)几个单词的首字母简写。crud主要被用在描述软件系统中数据库或者持久层的基本操作功能。以上来自百度百科的词条。crud操作,表示是增删改查.c[create]/r[read]/u[update]/d[
- trie算法
云 无 心 以 出 岫
算法#acwing算法c++数据结构
Trie(字典树、前缀树)是一种用于高效存储和检索字符串的数据结构。主要特点和优势:高效的前缀查询:能够快速判断一个字符串的前缀是否存在,以及查找具有特定前缀的所有字符串。节省空间:对于有共同前缀的字符串,只存储共同前缀部分一次,避免了重复存储。插入和查找的时间复杂度通常为O(m),其中m是要插入或查找的字符串的长度。基本结构:Trie由节点组成,每个节点可能有多个子节点,通常用数组或哈希表来表示
- 【AI大模型应用开发】【LangChain系列】2. 一文全览LangChain数据连接模块:从文档加载到向量检索RAG,理论+实战+细节
同学小张
大模型python人工智能langchainpython笔记经验分享promptembedding
大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。本文学习LangChain中的数据连接(Retrieval)模块。该模块提供文档加载、切分,向量存储、检索等操作的封装。最后,结合RAG基本流程、LangChainPrompt模板和输入输出模块,我们将利用LangChain实现RAG的基本流程。文章目录0.模块介绍1.Documentloaders文档加载模块1.
- python利用向量数据库chroma实现RAG检索增强生成
Cachel wood
LLM和AIGC阿里云云计算pythonflask开发语言RAGchroma
文章目录向量数据库chroma简介RAG简介RAG示例向量数据库chroma简介向量数据库chroma教程RAG简介RAG的全称是Retrieval-AugmentedGeneration,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。知识更新问题最先进的LLM会接受大量的训练数据,将广泛的常识知识存储在神经网络的权重中
- 关于centos7仓库归档导致yum源更新失败问题Could not retrieve mirrorlist http://mirrorlist.centos.org?arch=x86_64
飘然渡沧海
自己新建项目遇到问题linuxcentos
关于centos7仓库归档导致yum源更新失败问题,报错Loadedplugins:fastestmirrorDeterminingfastestmirrorsCouldnotretrievemirrorlisthttp://mirrorlist.centos.org?arch=x86_64&release=7&repo=sclo-rherrorwas14:curl#6-"Couldnotreso
- Kafka 如何保证数据不丢失?不重复
优秀后端工程师
Java程序员kafkalinq分布式
1.高可用型配置:acks=all,retries>0retry.backoff.ms=100(毫秒)(并根据实际情况设置retry可能恢复的间隔时间)优点:这样保证了producer端每发送一条消息都要成功,如果不成功并将消息缓存起来,等异常恢复后再次发送。缺点:这样保证了高可用,但是这会导致集群的吞吐量不是很高,因为数据发送到broker之后,leader要将数据同步到fllower上,如果网
- docker网站
水彩橘子
docker运维linux
1、安装docker环境curl-sSLhttps://get.daocloud.io/docker|shvi/etc/docker/daemon.json添加如下{"insecure-registries":["harbor.wtown.com"],"registry-mirrors":["http://hub-mirror.c.163.com"]}启动systemctldaemon-reloa
- 仿论坛项目--第三部分习题
HUT_Tyne265
前端javascript数据库
1.关于前缀树的特征描述不正确的是:根节点不包含字符,除根节点以外的每个节点,只包含一个字符。从根节点到某一个节点,路径经过的字符连接起来,为该节点对应的字符串。每个节点的所有子节点,包含的字符串不相同。每个节点,最多只能包含2个节点。解析:这些描述都是关于前缀树(Trie)的一些基本特点。前缀树是一种树形结构,用于高效地存储字符串数据,常用于自动补全或拼写检查等应用。在前缀树中:根节点通常不包含
- 07-02 Filtering(过滤 )&& 07-03 Sorting(排序 )
汤姆•猫
XPO.netlinq数据库XPO
07-02Filtering(过滤)XPOallowsyouto:XPO允许您:filterdataitemsinadatastorepriortoretrievingdata,在检索数据之前过滤数据存储中的数据项,filterthealreadyretrievedpersistentobjectsontheclientside.在客户端过滤已检索到的持久对象。FilterDataontheSer
- 扫会
那花
安全会议
S&PSession9:WebNDSSSession1A:IoTNDSSSession3B:AuthenticationUSENIXSession:UnderstandingHowHumansAuthenticateS&PSession9:Webhttps://dblp.uni-trier.de/db/conf/sp/sp2018.htmlFP-STALKER:TrackingBrowserFin
- kafka ---- producer与broker配置详解以及ack机制详解
husterlichf
#kafkakafkajava分布式
一、producer配置1、bootstrap.serverskafkabroker集群的ip列表,格式为:host1:port1,host2:port2,…2、client.id用于追踪消息的源头3、retries当发送失败时客户端会进行重试,重试的次数由retries指定,默认值是2147483647,即Integer.MAX_VALUE;在重试次数耗尽和delivery.timeout.ms
- Bert系列:论文阅读Rethink Training of BERT Rerankers in Multi-Stage Retrieval Pipeline
凝眸伏笔
nlp论文阅读bertrerankerretrieval
一句话总结:提出LocalizedContrastiveEstimation(LCE),来优化检索排序。摘要预训练的深度语言模型(LM)在文本检索中表现出色。基于丰富的上下文匹配信息,深度LM微调重新排序器从候选集合中找出更为关联的内容。同时,深度lm也可以用来提高搜索索引,构建更好的召回。当前的reranker方法并不能完全探索到检索结果的效果。因此,本文提出了LocalizedContrast
- 《经济学人》精读6:Retail Property
VictorLiNZ
VacantSpacesTheglobalpropertybusinesstriestoadapttoe-commerceManyretailpropertieswillslumpbutothershavebrighterprospectsDec14th2017|NEWYORKFIFTHAVENUEinNewYorkisthemostexpensivestretchofretailproperty
- centos中yum安装时提示Cannot find a valid baseurl for repo: base/7/x86_64 出现仓库源问题
Zww0891
服务器BUGcentoslinux运维
引言centos中yum安装时报Cannotfindavalidbaseurlforrepo:base/7/x86_64错误如下已加载插件:fastestmirrorLoadingmirrorspeedsfromcachedhostfileCouldnotretrievemirrorlisthttp://mirrorlist.centos.org/?release=7&arch=x86_64&re
- 数据结构(邓俊辉)学习笔记】串 09——BM_BC算法:以终为始
诸葛悠闲
数据结构学习笔记
文章目录1.不对称性2.善待教训3.前轻后重4.以终为始1.不对称性上一节所介绍的KMP算法计算时间,在最坏情况下也可以保证不超过线性。这的确是一个好消息。然而,倘若我们因此就停下继续优化的脚步,那就大错特错了。实际上,串匹配问题与一般的搜索问题的确有着本质的区别。在我们此前所讨论的所有搜索算法中,每次比对都是一种一对一的模式,也就是一个目标与另一个候选者判定二者是否相等,的确只需常数的时间。而现
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- 两步解决yum无法安装软件问题:Cannot find a valid baseurl for repo: centos-sclo-rh/x86_64
cts618
NLP自然语言处理Python基础Linuxlinuxpython人工智能
报错信息:[root@iZwz946ibli8ikuyqgtc58Z~]#yuminstallrh-redis5-redisLoadedplugins:fastestmirrorLoadingmirrorspeedsfromcachedhostfileCouldnotretrievemirrorlisthttp://mirrorlist.centos.org?arch=x86_64&release
- python脚本请求数量达到上限,http请求重试问题例子解析
乔丹搞IT
Pythonhttp网络协议网络python
在使用Python的requests库进行HTTP请求时,可能会遇到请求数量达到上限,导致MaxretriesexceededwithURL的错误。这通常发生在网络连接不稳定、服务器限制请求次数、或请求参数设置错误的情况下。以下是一些解决该问题的策略:增加重试次数:通过设置max_retries参数来增加重试次数,可以为requests库提供更多的连接尝试机会。例如,创建一个HTTPAdapter
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,