机器学习|YOLOv3框架进行深度学习(学不会来打我啊)

参考:

  1. Keras/Tensorflow+python+yolo3训练自己的数据集

0.背景

最近做了一个机器学习的大作业,接触了YOLOv3的学习框架,折腾了好长时间,分享下拿轮子直接用的流程。

 

1.环境准备

我的环境:Anancanda+Pycharm+TensorFlow(CPU)+Keras+YOLOv3,win10系统。

 

Anacanda:可以视作一个下载了很多包的Python,常用作数据处理与分析。我的版本:2019.10版本(到官网下载最新版即可)。

官网https://www.anaconda.com/

网盘链接:https://pan.baidu.com/s/1-AAAhOxB5gheO9jN4CG32w 

提取码:40oi

 

Pycharm:经典PythonIDE(集成开发环境),功能全面。

官网https://www.jetbrains.com/pycharm/ 下载即可

网盘链接:https://pan.baidu.com/s/1cSRbZUSNCA8_ont_oKwvVQ

提取码:vczz

 

TensorFlow:最广泛的经典机器学习系统,谷爹开发维护。我的版本1.13.1。

 

Keras:基于Python的深度学习库。Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow作为后端运行。我的版本:2.2.4。keras和TensorFlow框架要对应上,不然可能报错.

参考网站:https://docs.floydhub.com/guides/environments/

 

YOLOv3:深度学习框架.

下载地址:https://github.com/qqwweee/keras-yolo3。

 

说说为啥用YOLOv3,就一个字:快!

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第1张图片

第二象限的曲线简直就是对其他框架的嘲讽233

 

2.环境搭建

Anaconda一路next就可以了,最后开始界面如下:

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第2张图片

只会用到Anaconda Navigator和Prompt(主要),Prompt类似命令行,用来安装Python包。

Pycharm一般也一路next,勾选时参考下面选项:

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第3张图片

 

在创建Pycharm项目时,打开setting

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第4张图片

 

在Project Interpreter中选择Anaconda的Python即可

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第5张图片

 

TensorFlow安装:Anaconda Prompt中直接pip install tensorflow==1.13.1

Keras安装:Anaconda Prompt中直接pip install keras==2.2.4

 

3.开始学习

1)建立VOC2007文件夹结构,建立多个空文件夹如下,外面再包一层VOCdevkit文件夹,放在keras-yolo3-master文件夹内,非常easy。

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第6张图片

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第7张图片

 

2)把所有文件夹放入JPEGImages里面。

 

3)给想要做的数据打标签,推荐LabelImg工具,链接:https://pan.baidu.com/s/1GJFYcFm5Zlb-c6tIJ2N4hw 密码:h0i5。生成的xml文件与图片文件名相同。xml文件放入Annatations文件夹中。

4)VOC文件夹下建立test.py文件,代码如下:

import osimport randomtrainval_percent = 0.1train_percent = 0.9xmlfilepath = 'Annotations'txtsavepath = 'ImageSets\Main'total_xml = os.listdir(xmlfilepath)num = len(total_xml)list = range(num)tv = int(num * trainval_percent)tr = int(tv * train_percent)trainval = random.sample(list, tv)train = random.sample(trainval, tr)ftrainval = open('ImageSets/Main/trainval.txt', 'w')ftest = open('ImageSets/Main/test.txt', 'w')ftrain = open('ImageSets/Main/train.txt', 'w')fval = open('ImageSets/Main/val.txt', 'w')for i in list:    name = total_xml[i][:-4] + '\n'    if i in trainval:        ftrainval.write(name)        if i in train:            ftest.write(name)else:            fval.write(name)else:        ftrain.write(name)ftrainval.close()ftrain.close()fval.close()ftest.close()

用pycharm打开YOLO3的项目,接下来都在pycharm内操作。运行test.py,生成文件4个txt文件,这里面整理你的标签信息,这样VOC2007数据集就做完了。但是,YOLO框架不直接用这个数据集(惊不惊喜意不意外)。

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第8张图片

5)生成YOLO需要的txt文件。keras-yolo3-master目录下有一个voc_annotation.py的程序,修改它,把classes改为你要分的类别。YOLO本身带有80个类别,如果你要训练的恰好在这里吗,直接用吧,去YOLO官网https://pjreddie.com/darknet/yolo/下载配置的权重文件yolo3.weight。这里是训练自己的模型,就需要自行分类。

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第9张图片

运行之后,会在主目录下多生成三个txt文件

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第10张图片

有3个2007开头的txt文件:007_train.txt,2007_test.txt,2007_val.txt。删除的是这3个txt文件文件名中的“2007_”这部分,而不是其他。也就变成了:train.txt,test.txt,val.txt

6)修改参数文件yolo3.cfg,有三处yolo。

filter改成3*(5+类别数),classes改成类别数,random改成0(电脑烂的话)

所以如果分两类,改为:

filters=21,classes=2,random=0

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第11张图片

7)修改model_data下的voc和coco文件,放入自己的类别名,与voc_annotation.py类别保持一致。

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第12张图片

8)修改train.py,生成权重文件。train代码如下,epoch是循环次数,input_shape是图片尺寸,可以修改,但一定要是32的整倍数,logs_dir是权重文件生成的路径,换成别的地方也可以。运行后loss结果达到十几就可以了。(嗯,一开始我电脑稀烂,就循环了10次,loss达到100+,结果是能检测出来大部分,但精准度稀烂)

"""Retrain the YOLO model for your own dataset."""import numpy as npimport keras.backend as Kfrom keras.layers import Input, Lambdafrom keras.models import Modelfrom keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStoppingfrom yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_lossfrom yolo3.utils import get_random_datadef _main():    annotation_path = 'train.txt'    log_dir = 'logs/000/'    classes_path = 'model_data/voc_classes.txt'    anchors_path = 'model_data/yolo_anchors.txt'    class_names = get_classes(classes_path)    anchors = get_anchors(anchors_path)    input_shape = (416,416) # multiple of 32, hw    model = create_model(input_shape, anchors, len(class_names) )    train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir)def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):    model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred})    logging = TensorBoard(log_dir=log_dir)    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)    batch_size = 8    val_split = 0.1with open(annotation_path) as f:        lines = f.readlines()    np.random.shuffle(lines)    num_val = int(len(lines)*val_split)    num_train = len(lines) - num_val    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))    model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),            steps_per_epoch=max(1, num_train//batch_size),            validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),            validation_steps=max(1, num_val//batch_size),            epochs=300,            initial_epoch=0)    model.save_weights(log_dir + 'trained_weights.h5')def get_classes(classes_path):with open(classes_path) as f:        class_names = f.readlines()    class_names = [c.strip() for c in class_names]return class_namesdef get_anchors(anchors_path):with open(anchors_path) as f:        anchors = f.readline()    anchors = [float(x) for x in anchors.split(',')]return np.array(anchors).reshape(-1, 2)def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,            weights_path='model_data/yolo_weights.h5'):    K.clear_session() # get a new session    image_input = Input(shape=(None, None, 3))    h, w = input_shape    num_anchors = len(anchors)    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \        num_anchors//3, num_classes+5)) for l in range(3)]    model_body = yolo_body(image_input, num_anchors//3, num_classes)    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))if load_pretrained:        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)        print('Load weights {}.'.format(weights_path))if freeze_body:# Do not freeze 3 output layers.            num = len(model_body.layers)-7for i in range(num): model_body.layers[i].trainable = False            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(        [*model_body.output, *y_true])    model = Model([model_body.input, *y_true], model_loss)return modeldef data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):    n = len(annotation_lines)    np.random.shuffle(annotation_lines)    i = 0while True:        image_data = []        box_data = []for b in range(batch_size):            i %= n            image, box = get_random_data(annotation_lines[i], input_shape, random=True)            image_data.append(image)            box_data.append(box)            i += 1        image_data = np.array(image_data)        box_data = np.array(box_data)        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)yield [image_data, *y_true], np.zeros(batch_size)def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes):    n = len(annotation_lines)if n==0 or batch_size<=0: return Nonereturn data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)if __name__ == '__main__':    _main()

9)把生成的trained_weights.h5文件复制黏贴到keras-yolo3-master/model_data文件夹下,改名为yolo.h5。pycharm终端Terminal输入python yolo_video.py --image,开始训练。理想效果:

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第13张图片

10)回顾下来,打标签(必须的)和训练权重(电脑原因)花时间最长。最后只想说一句,GPU加速他不香吗?

 

大年初一了,开始正式写些自己学过用过的知识,梳理自己的知识脉络,也检查检查自己的抖动,教学相长,欢迎大家多多批评指正~

最后,我今天收到红包了,开心哭了~

机器学习|YOLOv3框架进行深度学习(学不会来打我啊)_第14张图片

你可能感兴趣的:(机器学习,机器学习,YOLO,新手)