- AWS Lambda与RDS连接优化之旅
t0_54manong
编程问题解决手册aws云计算个人开发
在云计算的时代,AWSLambda与RDS的结合为开发者提供了高效且灵活的解决方案。然而,在实际应用中,我们常常会遇到一些性能瓶颈。本文将通过一个真实案例,探讨如何优化AWSLambda与RDS之间的连接,以提高API的响应速度。背景介绍最近,我们在AWS上部署了一个使用Dotnet6开发的API,它通过APIGateway暴露给外部,并连接到同VPC内的MySQLAuroraRDS数据库。部署前
- VINS-Mono 开源项目安装与使用指南
劳丽娓Fern
VINS-Mono开源项目安装与使用指南VINS-Mono项目地址:https://gitcode.com/gh_mirrors/vi/VINS-MonoVINS-Mono是一个专为单目视觉惯性系统设计的实时SLAM框架,旨在提供高精度的视觉惯性里程计。本指南将带你深入了解其目录结构、启动文件以及配置文件,帮助你快速上手并应用此项目。目录结构及介绍VINS-Mono的项目结构清晰地组织了不同的组件
- AWS 监控和管理服务 CloudWatch
wumingxiaoyao
BigDataaws大数据云计算CloudWatch日志监控
AWS监控和管理服务CloudWatch什么是CloudWatchCloudWatch工作原理CloudWatchlog收集方法通过AWSLambda发送日志到CloudWatchLogs使用CloudWatchLogsAgent发送日志通过AWSSDK或API将日志发送到CloudWatchLogs通过CloudWatchAgent将应用和系统日志发送到CloudWatchLogsCloudWa
- PHP云原生与Serverless架构深度实践
seopthonshentong
云原生phpserverless
在前六篇系列教程的基础上,本文将深入探讨PHP在云原生和Serverless环境下的高级应用,帮助开发者构建可扩展、高可用的现代化PHP应用。1.ServerlessPHP架构Bref与AWSLambda集成bash#安装Brefcomposerrequirebref/brefphpartisanvendor:publish--tag=serverless-configserverless.yml
- ROS的学习链接整理 (基于古月居)
辣椒炒月饼
学习机器人自动驾驶
机器人控制与仿真:http://wiki.ros.org/roscontrol机器人即使定位与地图建模:http://wiki.ros.org/gmappinghttp://wiki.ros.org/hectorslam机械臂相关学习:http://moveit.ros.org/斯坦福大学公开课———机器人学:https://www.bilibili.com/video/av4506104/交通大
- (02)Cartographer源码无死角解析-(72) 2D后端优化→OptimizationProblem2D-约束残差、landmark残差
江南才尽,年少无知!
机器人cartographerslam自动驾驶增强现实
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下:(02)Cartographer源码无死角解析-(00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→
- cartographer官方指导文件说明---第3章 cartographer前端算法流程介绍
从小练武功
前端算法
cartographer官方指导文件说明第3章cartographer前端算法流程介绍3.1ScanMatch扫描匹配扫描匹配(ScanMatching)是Cartographer中实现局部SLAM的核心技术,它通过优化算法将当前激光扫描数据对齐到子图地图中。下面从计算过程、数学模型、参数配置等多个维度进行全面解析:3.1.1扫描匹配工作流程完整处理流程低置信度高置信度原始扫描数据运动畸变校正体素
- 3.3 里程计在SLAM中的应用
小慧1024
ROS1快速入门指南ros机器人linux
启动仿真环境roslaunchwpr_simulationwpb_corridor_hector.launch可视化结果如图所示在Riz建图中存在问题换一种方式建图roslaunchwpr_simulationwpb_corridor_gmapping.launch由于历程计的参与,地图被顺利建成
- SLAM面试笔记(5) — ROS面试
几度春风里
SLAM项目实战面试机器人ros自动驾驶
目录1ROS概述2ROS通信机制问题:服务通信概念问题:服务通信理论模型问题:参数服务器概念问题:参数服务器理论模型问题:参数服务器实现函数3ROS常用命令4常见面试题问题:roslaunch和rosrun区别?问题:什么是ROS?问题:ROS中的节点是什么?问题:ROS的消息通信机制是什么?问题:如何创建ROS的工作空间?问题:ROS中常用的机器人控制库有哪些?问题:ROS中如何进行机器人导航?
- nerf-slam论文复现
搬砖者(视觉算法工程师)
gitpython深度学习
nerf-slam实现三维重建详细的在我文档里面(有图片步骤)TableofContentsInstallDownloadDatasetsRunCitationLicenseAcknowledgmentsContactInstallClonerepowithsubmodules:gitclonehttps://github.com/ToniRV/NeRF-SLAM.git--recurse-sub
- STM32和树莓派的分工
⚙️修正版:典型硬件组合与通信流程(以移动机器人为例)1.硬件分工:大脑vs四肢角色硬件运行软件核心任务是否直接运行ROS决策大脑树莓派4B/JetsonNanoUbuntu+ROS运行SLAM、导航、视觉识别等复杂算法✅是实时四肢STM32F4FreeRTOS/裸机读取电机编码器、控制电机PWM❌否传感器/执行器电机、激光雷达、IMU-执行动作/采集数据-2.为什么需要STM32?树莓派无法直接
- 第5.4章 SLAM实战:使用std::chrono计算传感器消息时间戳
行知SLAM
机器人工程师带你入门SLAMunixc++自动驾驶人工智能
在机器人及自动驾驶定位中,传入的IMU和激光的消息都需要判断其数据的正确性,其中,主要会判断消息的开机时间和观测时间,其中开机时间主要通过调用chrono的函数计算,观测时间主要由GPS的时间来获得(GPS观测时间已由上篇文章总结GPS时间计算)。std::chrono是C++11引入的时间处理库,提供了高精度、类型安全且跨平台的时间计算功能。它主要包含三个核心概念:duration:表示时间间隔
- 《用Java 8新特性重构代码:让项目更简洁高效》
Tech_Jia_Hui
Java8新特性java重构开发语言
1.Lambda表达式:简化匿名内部类1.1传统方式vsLambda表达式1.2集合遍历对比1.3事件监听器简化2.StreamAPI:革命性的集合操作2.1基本Stream操作示例2.2数值流操作2.3分组和分区3.Optional:优雅处理null3.1基本Optional用法3.2Optional实践示例4.方法引用:更简洁的Lambda4.1四种方法引用类型4.2方法引用实践5.新的日期时
- 基于AWS无服务器架构的区块链API集成:零基础设施运维实践
AWS官方合作商
awsserverless架构web3区块链
引言区块链开发常面临节点部署、网络维护和扩展性挑战。本文将介绍如何通过AWS全托管服务构建高可用的区块链API层,无需自建节点、无需管理服务器,实现快速接入主流区块链网络(如以太坊、比特币),并保证企业级安全性与扩展性。graphLRA[前端应用]-->B[AmazonAPIGateway]B-->C[AWSLambda]C-->D[AmazonManagedBlockchain]C-->E[Bl
- 【SLAM】基于拓展卡尔曼滤波实现激光雷达传感器和角点提取的机器人定位附matlab代码
matlab科研社
机器人matlab数据结构
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍自主移动机器人定位是机器人学研究的核心问题之一。本文探讨了基于拓展卡尔曼滤波(EKF)融合激光雷达传感器数据和角点提取技术实现机器人定位的方法。通过深入分析激光雷达传感器的工
- 【ROS2】slam_toolbox建图详解
郭老二
ROSROS2SLAM
【ROS】郭老二博文之:ROS目录1、简介1)安装sudoaptinstallros-$ROS_DISTRO-slam-toolbox2)源码https://github.com/SteveMacenski/slam_toolbox3)官网https://joss.theoj.org/papers/10.21105/joss.027832、启动2.1启动slam_toolboxslam_toolb
- Python中日志输出配置
亚林瓜子
python开发语言logawslambdacloudwatchexception
问题在AWSlambdaPython中怎么样打印日志?Pythonimportlogginglogging.basicConfig()logging.getLogger("sqlalchemy.engine").setLevel(logging.INFO)logger=logging.getLogger()logger.setLevel(logging.INFO)上面是全局配置主要是如下配置:lo
- 视觉slam--框架
猿饵块
人工智能
视觉里程计的框架传感器VO--frontendVO的缺点后端--backend后端对什么数据进行优化利用什么数据进行优化的后端是怎么进行优化的回环检测建图建图是指构建地图的过程。构建的地图是点云地图还是什么信息的地图?建图并没有一个固定的形式和算法,地图的构建形式不是固定的,需要视SLAM的应用需求而定。
- 视觉slam十四讲实践部分记录——ch2、ch3
kikikidult
slam学习slamc++笔记
ch2一、使用g++编译.cpp为可执行文件并运行(P30)g++helloSLAM.cpp./a.out运行二、使用cmake编译mkdirbuildcdbuildcmake..makeCMakeCache.txt文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的CMakeCache.txt文件,或者在构建过程中仍然引用了旧的路径。我们需要彻底清理并重新开始。详细解决步骤步骤1:彻底清理源
- 【2D与3D SLAM中的扫描匹配算法全面解析】
Unpredictable222
SLAM算法自动驾驶自主导航算法opencvpclSLAMICPNDT
引言扫描匹配(ScanMatching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3DSLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注激光雷达SLAM中的典型方法。一、扫描匹配数学基础与核心原理1.1刚体变换的数学表示扫描匹配的核心是求解刚体变换,在2D和3D空间中有不同的数学表示:
- cv::FileStorage用法
Feliz Da Vida
c++c++开发语言opencv
cv::FileStorage是OpenCV中的一个类,用于读取和写入结构化数据(如YAML、XML、JSON)。它非常适合保存和加载诸如:相机内参(K、D)位姿(R、T)IMU数据配置参数向量、矩阵、图像、列表等常见用途保存相机标定参数(标定后得到的.yml文件)配置文件读写(如SLAM、AR、CV项目)记录检测结果或轨迹数据使用示例✅1.写入YAML文件#includeusingnamespa
- 《视觉SLAM十四讲》自用笔记 第二讲:SLAM系统概述
BandieraRosa
slam笔记
在rm队伍里作为算法组梯队队员度过了一个赛季,为了促进和负责其他工作的算法组成员的交流,我决定在接下来的半个学期里(可能更快)读完这本书,并将其中的部分理论应用于我自制的雷达导航小车上。以下为第二讲的部分笔记:第二讲SLAM系统概述2.0目标1.理解一个视觉SLAM框架由哪几个模块组成,各模块的任务是什么。2.搭建编程环境,为开发和实验做准备2.1相机单目相机:只使用一个摄像头。无法通过单张照片获
- 【深度学习新浪潮】如何入门三维重建?
小米玄戒Andrew
深度学习新浪潮图像处理基石深度学习人工智能图像处理计算机视觉python视觉几何opencv
入门三维重建算法技术需要结合数学基础、计算机视觉理论、编程实践和项目经验,以下是系统的学习路径和建议:一、基础知识储备1.数学基础线性代数:矩阵运算、向量空间、特征分解(用于相机矩阵、变换矩阵推导)。几何基础:三维几何(点、线、面的表示)、射影几何(单应矩阵、本质矩阵、基础矩阵)、李群与李代数(SLAM中的位姿优化)。概率与统计:贝叶斯估计、概率图模型(SLAM中的状态估计)、随机过程(滤波算法如
- Levenberg-Marquardt算法详解和C++代码示例
点云SLAM
算法算法非线性最小二乘问题高斯-牛顿法和梯度下降法LM算法数值优化计算机视觉SLAM后端优化
Levenberg-Marquardt(LM)算法是非线性最小二乘问题中常用的一种优化算法,它融合了高斯-牛顿法和梯度下降法的优点,在数值计算与SLAM、图像配准、机器学习等领域中应用广泛。一、Levenberg-Marquardt算法基本原理1.1问题定义我们希望最小化一个非线性残差平方和目标函数:minx f(x)=12∑i=1mri(x)2=12∥r(x)∥2\min_{\mathbf{x
- 基于Serverless架构的搜索引擎爬虫实现方案
搜索引擎技术
搜索引擎实战serverless架构搜索引擎ai
基于Serverless架构的搜索引擎爬虫实现方案关键词:Serverless架构、搜索引擎爬虫、无服务器计算、分布式爬虫、AWSLambda、事件驱动架构、网页抓取摘要:本文深入探讨了如何利用Serverless架构实现高效、可扩展的搜索引擎爬虫系统。我们将从传统爬虫的局限性出发,分析Serverless架构的优势,详细讲解基于事件驱动的爬虫设计原理,并提供完整的实现方案和代码示例。文章将覆盖核
- 推荐文章:Lambda Serverless Search - 构建低成本高效全文搜索引擎
赵鹰伟Meadow
推荐文章:LambdaServerlessSearch-构建低成本高效全文搜索引擎Lambda-Serverless-SearchUseAWSLambdatoperformfree-textsearchondocuments-WithSAMTemplate项目地址:https://gitcode.com/gh_mirrors/la/Lambda-Serverless-Search在当今快速发展的云
- 自动驾驶转具身智能的切入点有哪些?
自动驾驶之心
自动驾驶人工智能机器学习
这几天很多同学后台私信我们,自动驾驶如何转具身智能?会不会有比较大的gap。从算法维度上看,具身智能领域基本延续了机器人和自驾的一些算法,比如SLAM、规划控制、模型训练与微调方式、数据生成方式、大模型。当然也有很多具体的任务不太一样,比如数据采集方式、重执行硬件与结构。我们也创办了一个具身智能全栈学习社区:具身智能之心,平时分享了很多具身智能相关的算法、数据采集、软硬件方案等。主要方向涉及VLA
- 相机成像原理_键盘摄影(一)——相机成像基本元件
weixin_39620273
相机成像原理
写在前面笔者在就读本科期间,开始接触计算机视觉领域,主要包括传统的图像处理,研究生期间开始了解深度学习,三维重建和SLAM(同时定位和建图)。可是对于其中使用到的最重要的传感器,相机,它的成像原理知之甚少,照片是怎么成像的?有幸在工作之余玩起了胶片相机,学习了一些摄影知识,在此和大家分享相关知识,欢迎友好地指正和勘误,轻喷。随着器件的发展,目前的相机类型丰富,我们可以从基本的元件讲起,主要涉及到胶
- 【视觉SLAM基础(二):特征点提取与匹配】
Unpredictable222
SLAM算法算法自动驾驶ubuntuc++笔记opencv
前言在视觉SLAM中,特征点是连接连续图像帧的桥梁,是视觉里程计的核心。本文将详细介绍特征点的提取与匹配方法,以及如何利用这些特征点估计相机运动。原理部分只是简单介绍,详细的介绍大家可以去看高翔老师的《视觉SLAM十四讲》。1.特征点提取1.1特征点基本概念一个好的图像特征应该具有:可重复性:在不同图像中能被重复检测到可区分性:不同特征有显著区别高效性:计算复杂度低局部性:对遮挡、光照变化等鲁棒1
- 相机--RGBD相机
猿饵块
数码相机
教程分类原理和标定原理视频总结双目相机和RGBD相机原理作用RGBD相机=RGB相机+深度;RGB-D相机同时获取两种核心数据:RGB彩色图像和深度图像(DepthImage)。1.RGB彩色图像数据格式:标准三通道矩阵(Height×Width×3),通道顺序通常为Red-Green-Blue(RGB)。每个像素值范围:0~255(8位)或0~65535(16位,高动态范围)。用途:物体颜色识别
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&