Numpy中ndarray运算

文章目录

    • 一、逻辑运算
    • 二、通用判断函数
    • 三、np.where(三元运算符)
    • 四、统计运算
      • 4.1 统计指标
      • 4.2 案例:学生成绩统计运算

一、逻辑运算

# 生成10名同学,5门功课的数据
>>> score = np.random.randint(40, 100, (10, 5))

# 取出最后4名同学的成绩,用于逻辑判断
>>> test_score = score[6:, 0:5]

# 逻辑判断, 如果成绩大于60就标记为True 否则为False
>>> test_score > 60
array([[ True,  True,  True, False,  True],
       [ True,  True,  True, False,  True],
       [ True,  True, False, False,  True],
       [False,  True,  True,  True,  True]])

# BOOL赋值, 将满足条件的设置为指定的值-布尔索引
>>> test_score[test_score > 60] = 1
>>> test_score
array([[ 1,  1,  1, 52,  1],
       [ 1,  1,  1, 59,  1],
       [ 1,  1, 44, 44,  1],
       [59,  1,  1,  1,  1]])

二、通用判断函数

  • np.all()
# 判断前两名同学的成绩[0:2, :]是否全及格
>>> np.all(score[0:2, :] > 60)
False
  • np.any()
# 判断前两名同学的成绩[0:2, :]是否有大于90分的
>>> np.any(score[0:2, :] > 90)
True

三、np.where(三元运算符)

通过使用np.where能够进行更加复杂的运算

  • np.where()
# 判断前四名学生,前四门课程中,成绩中大于60的置为1,否则为0
temp = score[:4, :4]
np.where(temp > 60, 1, 0)
  • 复合逻辑需要结合np.logical_and和np.logical_or使用
# 判断前四名学生,前四门课程中,成绩中大于60且小于90的换为1,否则为0
np.where(np.logical_and(temp > 60, temp < 90), 1, 0)

# 判断前四名学生,前四门课程中,成绩中大于90或小于60的换为1,否则为0
np.where(np.logical_or(temp > 90, temp < 60), 1, 0)

四、统计运算

4.1 统计指标

在数据挖掘/机器学习领域,统计指标的值也是我们分析问题的一种方式。常用的指标如下:

  • min(a, axis)
    Return the minimum of an array or minimum along an axis.
  • max(a, axis])
    Return the maximum of an array or maximum along an axis.
  • median(a, axis)
    Compute the median along the specified axis.
  • mean(a, axis, dtype)
    Compute the arithmetic mean along the specified axis.
  • std(a, axis, dtype)
    Compute the standard deviation along the specified axis.
  • var(a, axis, dtype)
    Compute the variance along the specified axis.

这几个函数调用,一般会指定轴向, 结果会导致这个轴被压扁,缩减为一个数值,降维打击??:

  • axis=0:表示统计运算在0轴上进行,结果是沿着0轴方向的元素求一个最大值,然后该轴长度塌缩为1,最终该轴被消减

  • axis=1:表示统计运算在1轴上进行,结果是沿着1轴方向的元素求一个最大值,然后该轴长度塌缩为1,最终该轴被消减

  • 如果数组有多个维度,则axis的取值可以是任意轴的下标,计算方式同上

  • 如果不指定axis,则数组依次在所有轴上做计算,结果只要一个值.

Numpy中ndarray运算_第1张图片

data = np.arange(24).reshape(2, 3, 4)
print(data)

#   [[[ 0  1  2  3]
#     [ 4  5  6  7]
#     [ 8  9 10 11]]
# 
#    [[12 13 14 15]
#     [16 17 18 19]
#     [20 21 22 23]]]

print( np.sum(data, axis=0) )

#   0轴被sum压扁,1轴2轴不变
#   [[12 14 16 18]
#    [20 22 24 26]
#    [28 30 32 34]]

print( np.sum(data, axis=1) )

#   1轴被sum压扁,0轴2轴不变
#   [[12 15 18 21]
#    [48 51 54 57]]

Numpy中ndarray运算_第2张图片

4.2 案例:学生成绩统计运算

进行统计的时候,axis 轴的取值并不一定,Numpy中不同的API轴的值都不一样,在这里,axis 0代表列, axis 1代表行去进行统计

# 接下来对于前四名学生,进行一些统计运算
# 指定列 去统计
temp = score[:4, 0:5]
print("前四名学生,各科成绩的最大分:{}".format(np.max(temp, axis=0)))
print("前四名学生,各科成绩的最小分:{}".format(np.min(temp, axis=0)))
print("前四名学生,各科成绩波动情况:{}".format(np.std(temp, axis=0)))
print("前四名学生,各科成绩的平均分:{}".format(np.mean(temp, axis=0)))

结果:

前四名学生,各科成绩的最大分:[96 97 72 98 89]
前四名学生,各科成绩的最小分:[55 57 45 76 77]
前四名学生,各科成绩波动情况:[16.25576821 14.92271758 10.40432602  8.0311892   4.32290412]
前四名学生,各科成绩的平均分:[78.5  75.75 62.5  85.   82.25]

如果需要统计出某科最高分对应的是哪个同学?

  • np.argmax(temp, axis=)
  • np.argmin(temp, axis=)
print("前四名学生,各科成绩最高分对应的学生下标:{}".format(np.argmax(temp, axis=0)))

结果:

前四名学生,各科成绩最高分对应的学生下标:[0 2 0 0 1]

你可能感兴趣的:(数据分析)