初尝Kaggle系列—Leaf Classification(keras)

    Leaf Classification 是比较老的一个题目了,目前在Kaggle上已经有了很多的优秀kernel,作为一名课余时间自学深度学习的学生,拿这道题目来熟悉CNN和Keras,同时写一下自己在做这道题的过程中遇到的一些问题和自己感悟(PS:private leaderboard score 0.00191)。如若有错误或不足的地方,欢迎各位大佬指正。

一、解题思路介绍

    题目中提供了两种信息,1、原始图片信息,2、预处理特征(the provide pre-extracted features:margin、sharp、texture)。第一种方案,我们可以直接利用已有特征信息,构建常规分类器例如Adaboosting,Svm,Logistic,决策树等等,或者搭建神经网络来处理pre-extracted features第二种方案,利用图片信息搭建卷积神经网络,当然也可以利用现有的网络模型。第三种方案就是同时利用图片信息与预处理特征,当时看到这个想法的时候(大佬AbhijeetMulgund的思路),就很感兴趣,所以就按照这个思路做了(也算是一个及其简易的modle ensemble吧)。

二、题目代码

   1、读取train.csv,test.csv中的信息,读取image信息,class编码,这些都可以参考AbhijeetMulgund的代码(请不要吝啬你对大佬的vote)。

    2、因为要搭建CNN网络,所以利用已有的image肯定是不够的,需要Data Augmentation,又因为我们需要将两种特征混合到一个网络之中去,因此不能简单的调用ImageDataGenerator,这里我提供两种方案a、重载class ImageDataGenerator,b、自定义generator。这里我说明一下,其实自定义generator更简单一点,但是因为是初学者,所以我就都写了一遍。

    a、重载ImageDataGenerator(利用源代码去改写,我第一次就是打算自己单撸,各种bug)

from keras.preprocessing.image import ImageDataGenerator,NumpyArrayIterator,Iterator
class ImageDataGenerator_leaf(ImageDataGenerator):
    def flow(self, x,pre_feature,y,batch_size=32, 
             shuffle=False, seed=None):
        return NumpyArrayIterator_leaf(
            x,pre_feature,y,self,
            batch_size=batch_size,
            shuffle=shuffle,
            seed=seed)

class NumpyArrayIterator_leaf(Iterator):
    def __init__(self, x,pre_feature, y, image_data_generator,
                 batch_size=32, shuffle=False, seed=None,
                 data_format=None,
                 subset=None)
        if data_format is None:
            data_format = K.image_data_format()
        self.pre_feature = np.asarray(pre_feature)                    #预处理特征
        if self.x.ndim != 4:
            raise ValueError('Input data in `NumpyArrayIterator` '
                             'should have rank 4. You passed an array '
                             'with shape', self.x.shape)
        self.x = np.asarray(x)                                        #传入的image信息
        if y is not None:
            self.y = np.asarray(y)
        else:
            self.y = None
        self.image_data_generator = image_data_generator
        self.data_format = data_format
        self.n = len(self.x)
        self.batch_size = batch_size
        self.shuffle  =shuffle
        self.seed = seed
        self.index_generator = self._flow_index()
        super(NumpyArrayIterator_leaf, self).__init__(self.n, batch_size, shuffle, seed)

    def _get_batches_of_transformed_samples(self, index_array):
        batch_x = np.zeros(tuple([len(index_array)] + list(self.x.shape)[1:]),
                           dtype=K.floatx())
        batch_pre_feature = np.zeros(tuple([len(index_array)] +[len(self.pre_feature[0])] ),
                           dtype=K.floatx())
        for i, j in enumerate(index_array):
            x_temp = self.x[j]
            if self.image_data_generator.preprocessing_function:
                x_temp = self.image_data_generator.preprocessing_function(x_temp)
            x_temp = self.image_data_generator.random_transform(x_temp.astype(K.floatx()))
            x_temp = self.image_data_generator.standardize(x_temp)
            batch_x[i] = x_temp
        if self.y is None:
            return batch_x
        batch_pre_feature = self.pre_feature[index_array]
        batch_y = self.y[index_array]
        return [batch_x,batch_pre_feature], batch_y
    def next(self):
        # Keeps under lock only the mechanism which advances
        # the indexing of each batch.
        with self.lock:
            index_array = next(self.index_generator)
        # The transformation of images is not under thread lock
        # so it can be done in parallel
        return self._get_batches_of_transformed_samples(index_array)
imgen = ImageDataGenerator_leaf(
    rotation_range=20,
    zoom_range=0.2,
    horizontal_flip=True,
    vertical_flip=True,
    fill_mode='nearest')
imgen_train = imgen.flow(X_img_tr,X_num_tr, y_tr_cat)

        b、自定义generator

    ①、先定义生成器

imgen = ImageDataGenerator(
    rotation_range=20,
    zoom_range=0.2,
    horizontal_flip=True,
    vertical_flip=True,
    fill_mode='nearest')

    ②、定义自己的generator

def leaf_generator(generator, X_img_tr, X_num_tr, y_tr_cat):
    imgen_train = generator.flow(X_img_tr, y_tr_cat)
    n = (len(X_img_tr)+31)//32     #这里我使用了默认的batch_size:32,然后根据generator源代码里迭代次数的定义
    while True:                    # n = (self.n+batch_size-1)//batch_size 计算n值
        for i in range(n):              
            x_img,y = imgen_train.next()
            x_num = X_num_tr[imgen.index_array[:32]]
            yield [x_img,x_num],y

    ③、在使用fit_generator的时候传入自定义的leaf_generator

    3、搭建CNN网络

    可以参考上面链接里的代码,但是个人感觉这个网络其实是有一定的问题的,以下是我对这个网络结构的一些见解,如有错误,希望各位看官指正。

    首先我们来看一下网络的summary:

 初尝Kaggle系列—Leaf Classification(keras)_第1张图片

可以看到,进入全连接层之后,图像提取的特征值个数是18432,而预处理的特征值个数是192,这将会导致最终预处理数据所占的权重过低,甚至是几乎不起作用,也就失去了这个思路的意义,因此,可以对图像特征添加一个dense层来降维,使两种特征的权重均衡,或者对预处理特征用dense层进行维度提升。这里因为不想增加网络复杂度(主要是电脑配置太弱),采用的是降维的方案。

def combined_model():
    image = Input(shape=(96, 96, 1), name='image')
    x = Conv2D(8,kernel_size =(5,5),strides =(1,1),border_mode='same')(image)
    x = (Activation('relu'))(x)
    x = (MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))(x)
    x = Conv2D(32,kernel_size =(5,5),strides =(1,1),border_mode='same')(x)
    x = (Activation('relu'))(x)
    x = (MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))(x)

    x = Flatten()(x)
    x = Dense(192,activation='relu')(x)
    numerical = Input(shape=(192,), name='numerical')
    concatenated = merge([x, numerical], mode='concat')

    x = Dense(100, activation='relu')(concatenated)
    x = Dropout(.5)(x)
    out = Dense(99, activation='softmax')(x)
    model = Model(input=[image, numerical], output=out)
    model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
    return model

    4、训练网络

三、总结

    对于这个网络结构其实可以有很多的改进,例如把它设计成真正的联合模型(针对这个题目其实没必要),增加网络深度等等。作为初探Kaggle的题目,重心放在整体设计流程上也就可以了。麻雀虽小,五脏俱全,整个流程下来涉及到了DataAugmentation,简易Model Ensemble,也熟悉了简易CNN的搭建,也算是有所收获。












你可能感兴趣的:(kaggle,kaggle,keras)