- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- 遥感之机器学习树集成模型-CART算法之回归
遥感-GIS
遥感之机器学习树集成模型机器学习图像处理arcgis
本文在前面文章的基础上,连续介绍CART树在回归中的应用,其回归技术经常用于定量遥感领域,涉及各种地表参数含量的反演。主要分为如下几部分:回归概念描述回归树中数据集的划分准则CART回归树的原理和流程CART回归树的核心代码前面内容可参考:遥感之机器学习树模型专栏1回归概念机器学习中的回归建模以及相应的回归算法,在遥感领域对应的就是定量遥感分方向,比如水质参数反演,土壤中各种参数反演,森林各种生物
- Spark MLlib模型训练—回归算法 Random forest regression
不二人生
SparkML实战spark-ml回归随机森林
SparkMLlib模型训练—回归算法Randomforestregression随机森林回归(RandomForestRegression)是一种集成学习方法,通过结合多个决策树的预测结果来提升模型的准确性和稳健性。相较于单一的决策树模型,随机森林通过随机采样和多棵树的集成,减少了模型的方差,从而在处理复杂数据集时展现出更好的性能。本文将详细介绍随机森林回归的原理、实现方法、应用场景,并通过Sc
- Spark MLlib LinearRegression线性回归算法源码解析
SmileySure
Spark人工智能算法SparkMLlib
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2损失函数J(θ)=1/2∑mi=1(hθ(xi)−yi)2J(θ)=1/2∑i=1m(hθ(xi)−yi)2—————31/2是为了求导时系数为1,平方里是真实值减去估计值我们的目的就是求其最小值最小二乘法要求较为
- Spark MLlib模型训练—回归算法 GLR( Generalized Linear Regression)
猫猫姐
Spark实战回归spark-ml线性回归spark
SparkMLlib模型训练—回归算法GLR(GeneralizedLinearRegression)在大数据分析中,线性回归虽然常用,但在许多实际场景中,目标变量和特征之间的关系并非线性,这时广义线性回归(GeneralizedLinearRegression,GLR)便应运而生。GLR是线性回归的扩展,能够处理非正态分布的目标变量,广泛用于分类、回归以及其他统计建模任务。本文将深入探讨Spar
- 机器学习(2)单变量线性回归
天凉玩个锤子
2.1模型表示我们学习的第一个算法是线性回归算法。在监督学习中,我们有一个数据集,这个数据集被称为训练集(TrainingSet)。我们用小写字母m来表示训练样本的数目。监督学习算法的工作方式以房屋价格的训练为例,将训练集里房屋价格喂给学习算法,学习算法工作后输出一个函数h,h代表hypothesis(假设)。函数h输入为房屋尺寸大小x,h根据输入来得出y值,y值对应房子的价格。因此,h是一个从x
- 四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型
暴躁的大熊
人工智能人工智能机器学习算法
系列文章目录第一章【机器学习】初识机器学习第二章【机器学习】【监督学习】-逻辑回归算法(LogisticRegression)第三章【机器学习】【监督学习】-支持向量机(SVM)第四章【机器学习】【监督学习】-K-近邻算法(K-NN)第五章【机器学习】【监督学习】-决策树(DecisionTrees)第六章【机器学习】【监督学习】-梯度提升机(GradientBoostingMachine,GBM
- 计算机毕业设计hadoop+spark知识图谱美食推荐系统 美食价格预测 美团推荐系统 美团爬虫 大众点评爬虫 美食数据分析 美食可视化大屏 大数据毕设
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集大众点评美食数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartsspar
- Rust的Linfa和Polars库进行机器学习
Hello.Reader
rustrust机器学习人工智能
使用Rust的Linfa库和Polars库来实现机器学习中的线性回归算法。Linfacrate旨在提供一个全面的工具包来使用Rust构建机器学习应用程序。Polars是Rust的一个DataFrame库,它基于ApacheArrow的内存模型。Apachearrow提供了非常高效的列数据结构,并且正在成为列数据结构事实上的标准。在下面的例子中,我们使用一个糖尿病数据集来训练线性回归算法使用以下命令
- 岭回归算法
码银
回归数据挖掘人工智能
回归分析方法是利用数理统计方法分析数据,建立自变量和因变量间的回归模型,用于预测因变量变化的分析方法。其中比较经典的是HoerI和Kennard提出的岭回归算法。岭回归算法是在最小二乘法的基础上引|入正则项,使回归模型具有较好泛化能力和稳定性,但岭回归算法并不能处理自变量间非线性相关的情况。岭回归,又称脊回归,是对不适定问题进行回归分析时经常使用的一种正则化方法,是对最小二乘回归的一种补充,岭回归
- 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(9)模型优化
giszz
人工智能学习笔记学习笔记
模型训练后,就要进行模型优化了。一般来讲,很简单,优化就是不换模型换参数,或者直接换模型。换了之后来对比,最后选个最好的。比如在本案例中,选择LinearRegression后,MSE从22下降到12,因此选择新的模型。取前20个验证集数据,将标注数据与实际房价对比关系如上图。可以看到,效果还是很好的。LinearRegression是线性回归算法。线性回归算法是一种通过对样本特征进行线性组合来进
- 基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab
机器不会学习CSJ
算法深度学习
01基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab基础知识:基于WOA-CNN-LSTM-Attention的数据回归算法是一种利用深度学习技术来进行数据回归分析的方法。它结合了WOA(WhaleOptimizationAlgorithm)、CNN(ConvolutionalNeuralNetwork)、LSTM(LongSh
- Elasticsearch:什么是 kNN?
Elastic 中国社区官方博客
ElasticsearchAIElasticelasticsearch大数据搜索引擎全文检索人工智能
kNN-K-nearestneighbor定义kNN(即k最近邻算法)是一种机器学习算法,它使用邻近度将一个数据点与其训练并记忆的一组数据进行比较以进行预测。这种基于实例的学习为kNN提供了“惰性学习(lazylearning)”名称,并使算法能够执行分类或回归问题。kNN的假设是相似的点可以在彼此附近找到——物以类聚。作为一种分类算法,kNN将新数据点分配给其邻居中的多数集。作为一种回归算法,k
- GEE:关于在GEE平台上进行回归计算的若干问题
_养乐多_
GEEGEEjavascript遥感图像处理云计算回归
作者:CSDN@_养乐多_记录一些在GoogleEarthEngine(GEE)平台上进行机器学习回归计算的问题和解释。文章目录一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?1.2问:为什么只有这四种?哪个精度高?1.3问:GEE上能否运行深度学习算法?一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?答:GEE平台上有四种机器学习回归算法,分别是随机森林回归、CART(C
- 线性回归算法原理及python实现
德乌大青蛙
机器学习算法python数据挖掘
文章目录引言回归与分类的区别线性回归简单线性回归原理及推导python实现算法多元线性回归原理及推导python实现算法手工实现多元线性回归算法sklearn实现多元线性回归算法引言回归与分类的区别区分回归与分类其实很简单,举个例子,预测病人患病概率,结果只有患病和不患病2种,这就是分类;预测房价,结果可能是在一段区间内,这个就是回归。线性回归线性回归是利用数理统计中回归分析方法,其本质是寻找出一
- 数据回归算法 | Matlab实现Lasso回归预测模型
天天酷科研
数据回归算法(DR)回归matlab
文章目录效果一览文章概述源码设计参考资料效果一览文章概述数据回归算法|Matlab实现Lasso回归预测模型.在本文,我们继续讲解另外一种可以解决“多重共线性”的算法——Lasso回归(也称L1正则化算法),其全称叫做(最小绝对值收敛和选择算子算法,leastabsoluteshrinkageandselectionoperator)。在本文,我们继续讲解另外一种可以解决“多重共线性”的算法——L
- C语言经典算法之逻辑回归算法
JJJ69
C语言经典算法回归数据挖掘人工智能开发语言c语言数据结构算法
目录前言A.建议B.简介一代码实现二时空复杂度A.时间复杂度分析:B.空间复杂度分析:C.总结三优缺点A.优点B.缺点四现实中的应用前言A.建议1.学习算法最重要的是理解算法的每一步,而不是记住算法。2.建议读者学习算法的时候,自己手动一步一步地运行算法。B.简介在C语言中实现逻辑回归算法,我们需要构建一个模型来预测二元分类问题的概率,并使用梯度下降或其他优化方法找到最佳的模型参数。一代码实现以下
- MATLAB实现随机森林回归算法
AI Dog
数学建模\MATLAB随机森林数学建模机器学习matlab数据挖掘
随机森林回归是一种基于集成学习的机器学习算法,它通过组合多个决策树来进行回归任务。随机森林的基本思想是通过构建多个决策树,并将它们的预测结果进行平均或投票来提高模型的准确性和鲁棒性。以下是随机森林回归的主要特点和步骤:决策树的构建:随机森林由多个决策树组成。每个决策树都是通过对原始数据进行有放回的随机抽样(bootstrap抽样)来训练的。此外,在每次分裂节点时,算法随机选择一个特征子集进行分裂,
- 【机器学习笔记】回归算法
住在天上的云
机器学习笔记回归线性回归人工智能
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
- sklearn中一些简单机器学习算法的使用
橘柚jvyou
机器学习sklearn算法
目录前言KNN算法决策树算法朴素贝叶斯算法岭回归算法线性优化算法前言本篇文章会介绍一些sklearn库中简单的机器学习算法如何使用,一些注释已经写在代码中,帮助一些小伙伴入门sklearn库的使用。注意:本篇文章只涉及到如何使用,并不会讲解原理,如果想了解原理的小伙伴请自行搜索其他技术博客或者查看官方文档。KNN算法fromsklearn.datasetsimportload_iris#导入莺尾花
- 机器学习-逻辑回归
小旺不正经
人工智能机器学习逻辑回归人工智能
LogisticRegreession逻辑回归:解决分类问题逻辑回归既可以看做是回归算法,也可以看做是分类算法通常作为分类算法用,只可以解决二分类问题Sigmoid函数importnumpyasnpimportmatplotlib.pyplotaspltdefsigmoid(t):return1./(1.+np.exp(-t))x=np.linspace(-10,10,500)plt.plot(x
- Python 机器学习 线性回归算法
weixin_42098295
算法python机器学习
线性回归是一种预测数值型数据的监督学习算法。线性回归是统计学和机器学习中最基础且广泛应用的预测模型之一。实现在建立自变量(X)和因变量(Y)之间的线性关系。在Python的机器学习库scikit-learn中,可以方便地使用线性回归模型进行数据分析和预测。1、理解线性回归线性回归是统计学中最基本且广泛使用的预测模型之一,实现在研究自变量(X)和因变量(Y)之间的线性关系。线性回归模型可以是简单的单
- 回归算法是用来解决什么问题的?
散修然
机器学习算法原理python人工智能算法
回归算法是用来解决什么问题的?回归算法是为了预测数值而诞生的算法,常见的应用有:预测价格(大到房价股价,小到自己居住城市的大白菜明天多少钱一斤),预测概率(用户看完刷到的下个视频的概率,用户会买自己品牌垃圾新品的概率)。所以回归算法解决的问题就是需要预测连续值的问题,比如刚刚说到的价格,就算不知道具体的值,也知道需要预测的价格在哪个区间,比如我预测明天大白菜大概率6块一斤,但也可能有一定波动,实际
- 机器学习-线性回归法
小旺不正经
人工智能机器学习线性回归人工智能
线性回归算法解决回归问题思想简单,实现容易许多强大的非线性模型的基础结果具有很好的可解释性蕴含机器学习中的很多重要思想样本特征只有一个,称为:简单线性回归通过分析问题,确定问题的损失函数或者效用函数通过最优化损失函数或者效用函数,获得机器学习的模型几乎所有参数学习算法都是这样的套路最小二乘法代码实现简单线性回归法加载数据importnumpyasnpimportmatplotlib.pyplota
- 机器学习算法之逻辑回归算法(Logistic Regression)
迎风斯黄
数学建模美赛机器学习算法回归
逻辑回归算法是一种用于分类问题的经典机器学习算法。虽然它的名字中带有“回归”,但实际上逻辑回归用于解决分类问题,特别是二分类问题。本篇博文将详细介绍逻辑回归算法的工作原理、应用领域以及Python示例。算法背景逻辑回归起源于20世纪初,用于分析生存率数据。随后,它被广泛应用于医学、社会科学、经济学和工程学等领域。在机器学习中,逻辑回归通常用于解决以下问题:信用评分垃圾邮件分类疾病诊断用户流失预测金
- 2019-10-10 kNN近邻算法
lqzzz
kNN近邻算法算法原理样本点的特性与该邻居点的特性类似,可以简单理解为“物以类聚”。因此可以使用目标点的多个邻近点的特性表示当前点的特性。k近邻算法是非常特殊的,可以被认为是没有模型的算法,为了和其他算法统一,可以认为训练数据集就是模型本身。KNN分类算法:“投票法”,选择这k个样本中出现最多的类别标记作为预测结果。KNN回归算法:“平均法”,将这k个样本的实值输出标记的平均值作为预测结果。欧拉距
- (4)【Python数据分析进阶】Machine-Learning模型与算法应用-回归、分类模型汇总
代码骑士
#python数据分析回归
线性回归、逻辑回归算法应用请参考:https://codeknight.blog.csdn.net/article/details/135693621https://codeknight.blog.csdn.net/article/details/135693621本篇主要介绍决策树、随机森林、KNN、SVM、Bayes等有监督算法以及无监督的聚类算法和应用PCA对数据进行降维的算法的基本原理及应
- 机器学习-线性回归【手撕】
alstonlou
机器学习机器学习线性回归人工智能
线性回归1.概述回归是一种应用广泛的预测建模技术,这种技术的核心在于预测的结果是连续型变量。决策树,随机森林,支持向量机的分类器等分类算法的预测标签是分类变量,多以{0,1}来表示,而无监督学习算法比如PCA,KMeans的目标根本不是求解出标签,注意加以区别。回归算法源于统计学理论,它可能是机器学习算法中产生最早的算法之一,其在现实中的应用非常广泛,包括使用其他经济指标预测股票市场指数,根据喷射
- 回归统计在 echarts 中的实现
贵在随心
在做数据的统计的时候,难免会涉及到线性拟合问题,也就是回归统计问题。接下来我们看看回归算法如何把数据分析与echarts图表结合的.这里我们需要借助echarts的一个扩展库:echarts-stat.jsecStat是ECharts的统计和数据挖掘工具。你可以把它当作一个工具库直接用来分析数据;你也可以将其与ECharts结合使用,用ECharts可视化数据分析的结果。1、如何使用呢?1.1使用
- scikit-learn
JerryYang105
什么是机器学习?一门学科,研究如何用数据和经验优化计算机程序性能。什么是监督学习和无监督学习?监督学习:有输入和预期输出的学习;无监督学习:由真实(groundtruth)找到最好的假设(hypothesis)—预期输出不明确的学习方式。分类和回归的不同?分类算法的预期结果是离散值—几个选项中的一个;回归算法的预期结果是连续值—一个连续区间内的某个值。什么是estimater?estimater-
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen