节点分配
JobManager | TaskManager | ZooKeeper | |
---|---|---|---|
hadoop01 | √ | √ | √ |
hadoop02 | √ | √ | √ |
hadoop03 | √ | √ |
rz -E C:/flink-1.7.2-bin-hadoop27-scala_2.11.tgz
tar -zxvf flink-1.7.2-bin-hadoop27-scala_2.11.tgz -C ~/apps/
mv flink-1.7.2 flink
vim ~/.bash_profile
export FLINK_HOME=/home/hadoop/apps/flink
export PATH=$PATH:$FLINK_HOME/bin
重新加载配置文件
source ~/.bash_profile
vi $FLINK_HOME/conf/masters
hadoop01:8081
hadoop02:8081
vi $FLINK_HOME/conf/slaves
hadoop01
hadoop02
hadoop03
vi $FLINK_HOME/conf/flink-conf.yaml
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
#==============================================================================
# Common
#==============================================================================
# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn/Mesos
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.
#指定主节点,可以为localhost,这样在哪里启动谁就是JobManager
jobmanager.rpc.address: hadoop01
# The RPC port where the JobManager is reachable.
jobmanager.rpc.port: 6123
# The heap size for the JobManager JVM
jobmanager.heap.size: 1024m
# The heap size for the TaskManager JVM
taskmanager.heap.size: 1024m
# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.
taskmanager.numberOfTaskSlots: 2
# The parallelism used for programs that did not specify and other parallelism.
parallelism.default: 1
# The default file system scheme and authority.
#
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
# fs.default-scheme
#==============================================================================
# High Availability
#==============================================================================
# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
# 指定使用 zookeeper 进行 HA 协调
high-availability: zookeeper
# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
#
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...)
#
high-availability.storageDir: hdfs://bd1906/flink172/hastorage/
# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
high-availability.zookeeper.quorum: hadoop01:2181,hadoop02:2181,hadoop03:2181
# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
high-availability.zookeeper.client.acl: open
#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================
# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# .
#
# 指定 checkpoint 的类型和对应的数据存储目录
state.backend: filesystem
state.backend.fs.checkpointdir: hdfs://bd1906/flink-checkpoints
# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
# Default target directory for savepoints, optional.
#
# state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints
# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend).
#
# state.backend.incremental: false
#==============================================================================
# Web Frontend
#==============================================================================
# The address under which the web-based runtime monitor listens.
#
#web.address: 0.0.0.0
# The port under which the web-based runtime monitor listens.
# A value of -1 deactivates the web server.
rest.port: 8081
# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.
#web.submit.enable: false
#==============================================================================
# Advanced
#==============================================================================
# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn or Mesos, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
# /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
# io.tmp.dirs: /tmp
# Specify whether TaskManager's managed memory should be allocated when starting
# up (true) or when memory is requested.
#
# We recommend to set this value to 'true' only in setups for pure batch
# processing (DataSet API). Streaming setups currently do not use the TaskManager's
# managed memory: The 'rocksdb' state backend uses RocksDB's own memory management,
# while the 'memory' and 'filesystem' backends explicitly keep data as objects
# to save on serialization cost.
#
# taskmanager.memory.preallocate: false
# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first
# The amount of memory going to the network stack. These numbers usually need
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, teh default max is 1GB.
#
# taskmanager.network.memory.fraction: 0.1
# taskmanager.network.memory.min: 64mb
# taskmanager.network.memory.max: 1gb
#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================
# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL
# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.
# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user
# The configuration below defines which JAAS login contexts
# security.kerberos.login.contexts: Client,KafkaClient
#==============================================================================
# ZK Security Configuration
#==============================================================================
# Below configurations are applicable if ZK ensemble is configured for security
# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper
# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client
#==============================================================================
# HistoryServer
#==============================================================================
# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)
# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/
# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0
# The port under which the web-based HistoryServer listens.
#historyserver.web.port: 8082
# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/
# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000
拷贝zoo.cfg、hdfs-site.xml、core-site.xml到flink配置文件目录
cp $ZOOKEEPER_HOME/conf/zoo.cfg $FLINK_HOME/conf/
cp $HADOOP_HOME/etc/hadoop/hdfs-site.xml $FLINK_HOME/conf/
cp $HADOOP_HOME/etc/hadoop/core-site.xml $FLINK_HOME/conf/
scp -r flink hadoop02:$PWD
scp -r flink hadoop03:$PWD
scp ~/.bash_profile hadoop02:/home/hadoop/
scp ~/.bash_profile hadoop03:/home/hadoop/
三台机器都要重新加载配置文件
source ~/.bash_profile
如果前面修改了jobmanager.rpc.address的值,请修改hadoop02上的flink-conf.yaml中jobmanager.rpc.address的值为hadoop02,hadoop03可改可不改,这样才能看出高可用集群的效果!!
依次启动zk、hdfs、flink
zkServer.sh start
start-dfs.sh
start-cluster.sh
查看进程
jps
查看Web UI http://hadoop01:8081/
可以跑一个官方案例测试一下(输入文件为flink文件夹中的README.txt文件)
flink run -m hadoop02:8081 \
$FLINK_HOME/examples/batch/WordCount.jar
至此集群搭建成功!!
停止集群命令
stop-cluster.sh
Maven依赖
<properties>
<flink.version>1.7.2flink.version>
<hadoop.version>2.7.6hadoop.version>
<scala.version>2.11.8scala.version>
properties>
<dependencies>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-javaartifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-scala_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-java_2.11artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-scala_2.11artifactId>
<version>${flink.version}version>
dependency>
dependencies>
WordCountJava.java
package wc;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.MapOperator;
import org.apache.flink.api.java.tuple.Tuple2;
/**
* @Author Daniel
* @Description java版本Flink wordcount 程序
**/
public class WordCountJava {
public static void main(String[] args) {
//编程入口
ExecutionEnvironment batchEnv = ExecutionEnvironment.getExecutionEnvironment();
//数据源
DataSource<String> dataSource = batchEnv.fromElements("hadoop hadoop", "spark saprk saprk", "flink flink flink");
//flatMap算子,一行转多行
FlatMapOperator<String, String> wordDataSet = dataSource.flatMap((FlatMapFunction<String, String>) (value, out) -> {
String[] words = value.split(" ");
for (String word : words) {
out.collect(word);
}
}).returns(Types.STRING);
//map算子,计数
MapOperator<String, Tuple2<String, Integer>> wordAndOneDataSet = wordDataSet.map((MapFunction<String, Tuple2<String, Integer>>) value -> new Tuple2(value, 1))
.returns(Types.TUPLE(Types.STRING, Types.INT));
//分组并计数
AggregateOperator<Tuple2<String, Integer>> lastResult = wordAndOneDataSet.groupBy(0)
.sum(1);
try {
//Sink打印结果
lastResult.print();
// batchEnv.execute("WordCountJava");//批处理不用此方法,流处理得使用
} catch (Exception e) {
e.printStackTrace();
}
}
}
WordCountScala.scala
package wc
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment, _}
/**
* @Author Daniel
* @Description scala版本Flink wordcount 程序
**/
object WordCountScala {
def main(args: Array[String]): Unit = {
//获取flink编程入口
val streamEnv = StreamExecutionEnvironment.getExecutionEnvironment
//从网络端口读取流数据
val dS = streamEnv.socketTextStream("hadoop01", 9999)
// 主要业务逻辑
val resultDS = dS.flatMap(line => line.toString.split(" "))
.map(word => Word(word, 1))
.keyBy("word")
.sum("count")
//输出
resultDS.print()
//进行流数据处理,不间断的运行
streamEnv.execute("StreamWordCountScala")
}
}
//良好的数据结构
case class Word(word: String, count: Int)
nc -lk hadoop01 9999
> hadoop hadoop spark spark spark flink flink flink flink