paper title |
code link |
code depends |
paper link |
keywords |
snapshot |
|
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients |
https://github.com/ppwwyyxx/tensorpack/tree/master/examples/DoReFa-Net |
tensoflow |
https://arxiv.org/pdf/1606.06160v2.pdf |
旷视,low bitwidth weights, CPU/FPGA |
|
|
Stacked attention networks for image question answering |
https://github.com/zcyang/imageqa-san |
Theano |
https://arxiv.org/pdf/1511.02274.pdf |
CMU,MSR, |
|
|
Newtonian Image Understanding: Unfolding the Dynamics of Objects in Statis Images |
https://github.com/roozbehm/newtonian |
Torch |
https://arxiv.org/pdf/1511.04048.pdf |
AI2 |
|
|
Joint Unsupervised Learning of Deep Representations and Image Clusters |
https://github.com/jwyang/joint-unsupervised-learning https://github.com/jwyang/JULE-Caffe |
caffe |
https://arxiv.org/pdf/1604.03628v3.pdf |
无监督,聚类 |
|
|
Improving Localization Accuracy for Object Detection |
https://github.com/gidariss/LocNet |
caffe |
https://arxiv.org/pdf/1511.07763v2.pdf |
LOC,IoU |
|
|
Domain Guided Dropout for Person Re-identification |
https://github.com/Cysu/dgd_person_reid |
caffe |
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Xiao_Learning_Deep_Feature_CVPR_2016_paper.pdf |
CUHK |
|
|
Repository containing wrapper to obtain various object proposals easily |
https://github.com/batra-mlp-lab/object-proposals |
matlab |
https://arxiv.org/pdf/1505.05836.pdf |
|
|
|
Pairwise Matching through Max-Weight Bipartite Belief Propagation |
https://github.com/zzhang1987/HungarianBP |
matlab |
https://zzhang.org/pdfs/ZhangEtal2016Cvpr.pdf |
UC |
|
|
Segment-CNN: A Framework for Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs |
https://github.com/zhengshou/scnn |
caffe |
https://arxiv.org/pdf/1601.02129.pdf |
UC, action |
|
|
A Comparative Study for Single Image Blind Deblurring |
https://github.com/phoenix104104/cvpr16_deblur_study |
matlab |
http://vllab1.ucmerced.edu/~wlai24/cvpr16_deblur_study/paper/cvpr16_deblur_study.pdf |
UC,deblur |
|
|
Large-Scale Location Recognition and the Geometric Burstiness Problem |
https://github.com/tsattler/geometric_burstiness |
/ |
http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01273.pdf |
|
|
|
A Caffe-based implementation of very deep convolution network for image super-resolution |
https://github.com/huangzehao/caffe-vdsr |
caffe |
http://cv.snu.ac.kr/research/VDSR/VDSR_CVPR2016.pdf |
Super-Resolution |
|
|
Dynamically neural network structures for multi-domain question answering |
https://github.com/jacobandreas/nmn2 |
caffe |
https://arxiv.org/pdf/1511.02799v3.pdf |
UC,Visual question answering |
|
|
DPPnet: Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction |
https://github.com/HyeonwooNoh/DPPnet |
torch |
https://arxiv.org/pdf/1511.05756v1.pdf |
Visual question answering |
|
|
Shallow and Deep Convolutional Networks for Saliency Prediction |
https://github.com/imatge-upc/saliency-2016-cvpr |
caffe |
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pan_Shallow_and_Deep_CVPR_2016_paper.pdf |
Saliency Prediction |
|
|
Main repository for Deep Metric Learning via Lifted Structured Feature Embedding |
https://github.com/rksltnl/Deep-Metric-Learning-CVPR16 |
caffe |
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Song_Deep_Metric_Learning_CVPR_2016_paper.pdf |
Stanford,Metric Learning |
|
|
Natural Language Object Retrieva |
http://ronghanghu.com/text_obj_retrieval https://github.com/ronghanghu/natural-language-object-retrieval |
caffe |
https://arxiv.org/pdf/1511.04164.pdf |
UC,NUS |
|
|
Faster R-CNN features for Instance Search |
https://github.com/imatge-upc/retrieval-2016-deepvision |
caffe |
https://arxiv.org/pdf/1604.08893v1.pdf |
faster R-CNN |
|
|
Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs |
https://github.com/zeakey/DeepSkeleton |
caffe |
https://arxiv.org/pdf/1603.09446v2.pdf |
|
|
|
Accumulated Stability Voting: A Robust Descriptor From Descriptors of Multiple Scales |
https://github.com/shamangary/ASV |
matlab |
https://drive.google.com/file/d/0B_q2Q4O-rzP6bmlxTzFyMGJfaWs/view?usp=drive_web |
|
|
|
Deep Saliency with Encoded Low Level Distance Map and High Level Features |
https://github.com/gylee1103/SaliencyELD |
caffe |
https://arxiv.org/pdf/1604.05495v1.pdf |
Saliency detection |
|
|
One-Shot Learning of Scene Locations via Feature Trajectory Transfer |
https://github.com/rkwitt/TrajectoryTransfer |
/ |
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Kwitt_One-Shot_Learning_of_CVPR_2016_paper.pdf |
|
|
|
Generation and Comprehension of Unambiguous Object Descriptions |
https://github.com/mjhucla/Google_Refexp_toolbox |
/ |
https://arxiv.org/abs/1511.02283 |
google |
|
|
A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation (DAVIS) |
https://github.com/fperazzi/davis |
/ |
https://graphics.ethz.ch/~perazzif/davis/files/davis.pdf |
Video object segmentation |
|
|
Activation function used in "Learning to Assign Orientations to Feature Points“ |
https://github.com/nyanp/tiny-cnn/pull/61 |
tiny-dnn |
https://arxiv.org/pdf/1511.04273v2.pdf |
|
|
|
DenseCap: Fully Convolutional Localization Networks for Dense Captioning |
https://github.com/jcjohnson/densecap |
torch |
http://cs.stanford.edu/people/karpathy/densecap.pdf |
Li Fei-Fe,FCLN |
|
|