- Pytorch 三小时极限入门教程
power-辰南
人工智能深度学习pytorch人工智能
一、引言在当今的人工智能领域,深度学习占据了举足轻重的地位。而Pytorch作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解Pytorch的核心知识,助你顺利踏上深度学习的征程。二、Pytorch基础环境搭建安装An
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- 使用神经网络拟合6项参数
Andrew_Xzw
神经网络人工智能深度学习开发语言机器学习python
使用神经网络拟合6项参数1.数据预处理1.1添加参数解析1.2数据预处理逻辑1.3数据归一化及划分1.4数据标签处理逻辑1.5数据转torch2.定义model2.1CNN_LSTM2.2Transformer3.定义train脚本3.1loss和optimizer3.2train3.3predict1.数据预处理1.1添加参数解析为了方便管理模型和训练等参数,统一用参数解析。defparse_a
- 3DUnetCNN 项目常见问题解决方案
魏纯漫
3DUnetCNN项目常见问题解决方案3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN项目基础介绍3DUnetCNN是一个基于PyTorch的3DU-Net卷积神经网络(CNN)
- 深度学习模块C2f代码详解
你是狒狒吗
目标检测人工智能计算机视觉pytorchYOLO神经网络
C2f是一个用于构建卷积神经网络(CNN)的模块,特别是在YOLOv5和YOLOv8等目标检测模型中。这个模块是一个改进的CSP(CrossStagePartial)Bottleneck结构,旨在提高计算效率和特征提取能力。下面是对C2f类的详细解释:类定义和初始化Python复制classC2f(nn.Module):“”“FasterImplementationofCSPBottleneckw
- 每天五分钟深度学习框架pytorch:基于vgg块搭建VGG卷积神经网络
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorchcnnVGG卷积神经网络
本文重点前面我们使用pytorch搭建了vgg块,本文我们使用vgg块搭建卷积神经网络VGG16,我们先来看一下vgg16的模型结构是什么样的:搭建vgg16importtorchfromtorchimportnndefvgg_block(num_convs,in_channels,out_channels):net=[nn.Conv2d(in_channels,out_channels,kern
- 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLO大师
YOLO网络cnn目标检测论文阅读yolov8
YOLOv8目标检测创新改进与实战案例专栏专栏目录:YOLOv8有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv8基础解析+创新改进+实战案例介绍摘要视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸
- 基于深度学习的人脸表情识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能代码
1.引言近年来,人脸表情识别在情感计算、智能人机交互、心理学研究等领域有着广泛的应用。深度学习的快速发展,使得高效、准确的人脸表情识别成为可能。通过利用卷积神经网络(CNN)和目标检测技术,可以实现实时、精准的人脸表情识别。本文将基于YOLOv8构建一个完整的人脸表情识别系统。系统集成了数据集准备、YOLOv8模型训练、实时推理以及基于PyQt5的图形用户界面(UI)。通过本文,你将学习如何实现一
- 【TVM 教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在ifname=="__main__":代码块中。importosi
- 3D卷积神经网络:原理、应用与深入解析
从零开始学习人工智能
cnn人工智能神经网络目标跟踪3dopencv
3D卷积原理3D卷积,或称为三维卷积,是卷积神经网络(CNN)中的一种技术,用于处理三维数据,如医学图像(如MRI、CT扫描)或视频数据。与标准的二维卷积(处理图像)不同,3D卷积在三个维度(通常是深度、高度和宽度)上操作。在这个图示中,我们可以看到一个3x3x3的卷积核(也称为滤波器或特征检测器)在一个5x5x5的输入数据块上滑动。在每个位置,卷积核与其覆盖的输入数据块的部分进行元素乘法并求和,
- 使用 AI 在医疗影像分析中的应用探索
摘要医疗影像分析是AI在医疗领域的重要应用方向,能够提高诊断效率,减少误诊率。本文将深入探讨AI技术在医疗影像数据分析中的应用,包括核心算法、关键实现步骤和实际案例,并提供一个基于卷积神经网络(CNN)的图像分类Demo。引言随着医疗影像数据的爆炸式增长,传统的人工分析已无法满足高效、精准诊断的需求。AI技术通过深度学习算法,在医疗影像的识别、分类和标注中发挥了重要作用。本文章将结合技术实现与案例
- 【机器学习】---神经架构搜索(NAS)
Undoom
机器学习Python机器学习架构人工智能python
这里写目录标题引言1.什么是神经架构搜索(NAS)1.1为什么需要NAS?2.NAS的三大组件2.1搜索空间搜索空间设计的考虑因素:2.2搜索策略2.3性能估计3.NAS的主要方法3.1基于强化学习的NAS3.2基于进化算法的NAS3.3基于梯度的NAS4.NAS的应用5.实现一个简单的NAS框架6.总结引言随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方
- Pytorch实现猫狗分类
NoKnowovo
Pythonpytorch分类人工智能
在进行编码之前,确保已经安装好Pytorch以及相关依赖环境模型定义构建构建一个较为简单的卷积神经网络模型#定义神经网络模型classCatDogClassifier(nn.Module):def__init__(self):super(CatDogClassifier,self).__init__()self.conv1=nn.Conv2d(3,16,kernel_size=5,stride=1
- 神经网络基础-价格分类案例
dwjf321
深度学习神经网络人工智能神经网络分类人工智能
文章目录1.需求分析2.导入所需工具包3.构建数据集4.构建分类网络模型5.训练模型6.模型训练7.评估模型8.模型优化学习目标:掌握构建分类模型流程动手实践整个过程1.需求分析小明创办了一家手机公司,他不知道如何估算手机产品的价格。为了解决这个问题,他收集了多家公司的手机销售数据。该数据为二手手机的各个性能的数据,最后根据这些性能得到4个价格区间,作为这些二手手机售出的价格区间。主要包括:bat
- AlexNet:开启深度学习图像识别新纪元
池央
深度学习人工智能
一、引言在深度学习的璀璨星空中,AlexNet无疑是一颗极为耀眼的明星。它于2012年横空出世,并在ImageNet竞赛中一举夺冠,这一历史性的突破彻底改变了计算机视觉领域的发展轨迹,让全世界深刻认识到深度卷积神经网络在图像识别任务中的巨大潜力,从而掀起了深度学习研究与应用的热潮。二、AlexNet网络架构详解(一)输入层AlexNet的输入图像通常为224x224x3的彩色图像。这一尺寸的确定是
- 北大新模型FAN:新型神经网络架构,填补周期性特征建模空白
海森大数据
神经网络人工智能深度学习
在科学研究和技术发展的浪潮中,周期性现象作为自然界和人类社会的普遍规律,一直备受关注。从天文学中的行星运动到经济学中的商业周期,周期性无处不在,深刻影响着我们的生活和思考方式。然而,传统的神经网络模型,如多层感知器(MLP)和Transformer,在周期性建模方面却存在明显不足。面对这一挑战,北京大学李戈教授的团队提出了一种创新性的网络架构——FourierAnalysisNetworks(FA
- 深度学习:从基础到实践(上、下册)(安德鲁·格拉斯纳)
fyjgfyjfg
深度学习人工智能
(pdf):python33+(0m深度学习概述:深度学习是机器学习的一个分支,它试图通过使用深层神经网络来模拟人脑的学习过程。随机性与基础统计学:在深度学习中,随机性起着重要作用,了解基础统计学有助于更好地理解深度学习中的随机过程和不确定性。训练与测试:深度学习模型的训练过程包括使用训练数据来优化模型参数,而测试过程则使用测试数据来评估模型的性能。过拟合与欠拟合:过拟合是指模型在训练数据上表现过
- 2024年诺贝尔奖揭晓:机遇与挑战并存
人工智能aigcopenai
ChatGPT竟然也不相信诺贝尔奖结果!2024年诺贝尔奖对科研领域来说是个重要的时刻。诺贝尔奖可谓是科学界的“奥斯卡”,每年的获奖者都会引起广泛关注。今年,瑞典皇家科学院公布,约翰·J·霍普菲尔德和杰弗里·E·辛顿荣获诺贝尔物理学奖,这个消息让不少人感到惊讶。诺贝尔物理学奖:意外的突破一次颁奖的震撼诺贝尔奖的官方网站指出,霍普菲尔德和辛顿因其在人工神经网络和机器学习领域的基础性研究而获奖。他们的
- 每天五分钟深度学习框架pytorch:快速搭建VGG网络的基础模块VGG块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch网络卷积神经网络卷积层人工智能
本文重点前面我们介绍了VGG神经网络,我们知道VGG是由许多的VGG块构成,那么本文我们将使用pytorch搭建VGG块代码实现:importtorchfromtorchimportnndefvgg_block(num_convs,in_channels,out_channels):net=[nn.Conv2d(in_channels,out_channels,kernel_size=3,padd
- 大规模语言模型从理论到实践 大语言模型预训练数据
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:大语言模型预训练数据关键词:大规模语言模型、预训练数据、数据集选择、数据清洗、数据增强、数据集评估、数据集扩展1.背景介绍1.1问题的由来随着深度学习和大规模神经网络的发展,大型语言模型(LargeLanguageModels,LLMs)成为了自然语言处理(NLP)领域的一项突破性技术。LLMs能够生成流畅且具有上下文关联性的文本,这得益于它们在海量文本数据上的预训练。
- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- 【机器学习:十五、神经网络的编译和训练】
KeyPan
机器学习机器学习神经网络人工智能深度学习pytorchubuntulinux
1.TensorFlow实现代码TensorFlow是深度学习中最为广泛使用的框架之一,提供了灵活的接口来构建、编译和训练神经网络。以下是实现神经网络的一个完整代码示例,以“手写数字识别”为例:importtensorflowastffromtensorflow.kerasimportlayers,models#加载MNIST数据集(x_train,y_train),(x_test,y_test)
- 【机器学习:十六、其他的激活函数】
KeyPan
机器学习机器学习人工智能算法服务器运维ubuntu
1.Sigmoid激活函数的替代方案Sigmoid激活函数在神经网络中曾广泛使用,其数学公式为:σ(x)=11+e−x\sigma(x)=\frac{1}{1+e^{-x}}σ(x)=1+e−x1输出范围为(0,1),适合二分类问题。但随着深度学习的发展,Sigmoid函数逐渐被替代,主要原因包括:梯度消失问题:当输入绝对值较大时,梯度趋近于零,导致权重更新困难。非零中心问题:输出值始终为正,可能
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- 从RNN到Transformer:生成式AI技术演变与未来展望
非著名架构师
人工智能rnntransformer
生成式人工智能(GenerativeAI)近年来取得了令人瞩目的进展,其背后的核心技术是自回归模型的不断演进。从传统的递归神经网络(RNN)到革命性的Transformer架构,本文将全面剖析这一技术发展历程。一、RNN:生成式模型的起点1.RNN的基本原理递归神经网络(RecurrentNeuralNetwork,RNN)是一种专为处理序列数据设计的神经网络架构。其核心思想是通过循环连接的隐藏状
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- 遗传算法与深度学习实战(26)——编码卷积神经网络架构
盼小辉丶
遗传算法与深度学习实战深度学习cnn遗传算法
遗传算法与深度学习实战(26)——编码卷积神经网络架构0.前言1.EvoCNN原理1.1工作原理1.2基因编码2.编码卷积神经网络架构小结系列链接0.前言我们已经学习了如何构建卷积神经网络(ConvolutionalNeuralNetwork,CNN),在本节中,我们将了解如何将CNN模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。1.EvoCNN原理进化卷积神
- NAS(Neural Architecture Search) 神经结构搜索
hxxjxw
Neuralarchitecturesearch(NAS),神经结构搜索,是强化学习的一个重要应用方向,也是AutoML的一个非常火的研究方向.NAS的原理是给定一个称为搜索空间的候选神经网络结构集合,用某种策略从中搜索出最优网络结构
- 诺贝尔物理学奖新视野:机器学习与神经网络的璀璨华章
青云交
大数据新视界#AIAI&人工智能机器学习神经网络人工智能诺贝尔物理学奖应用实例未来展望传统物理学
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- Python小项目:利用U-net完成细胞图像分割
利用U-Net完成细胞图像分割的详细指南在生物医学领域,细胞图像分割是一个关键步骤,能够帮助研究人员分析细胞结构和功能。U-Net作为一种强大的卷积神经网络结构,广泛应用于医学图像分割任务。本文将详细介绍如何利用U-Net完成细胞图像分割项目,涵盖从数据准备到模型部署的各个步骤。项目步骤概览数据准备数据预处理构建U-Net模型训练模型模型评估图像分割结果可视化调优和优化部署和应用1.数据准备收集数
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla