今天胡老师给我们讲了数学规划模型,数学规划模型是优化模型的一种,包括线性规划模型(目标函数和约束条件都是线性函数的优化问题); 非线性规划模型(目标函数或者约束条件是非线性的函数); 整数规划(决策变量是整数值得规划问题); 多目标规划(具有多个目标函数的规划问题) ;目标规划(具有不同优先级的目标和偏差的规划问题) 动态规划(求解多阶段决策问题的最优化方法) 。数学规划模型相对比较好理解,关键是要能熟练地求出模型的解。
以下是解线性规划模型的方法:
1.线性规划问题
线性规划问题的标准形式为:
min f ' *x
sub.to:A*x
其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。
MATLAB中,线性规划问题(Linear Programming)的求解使用的是函数linprog。
函数 linprog
格式 x = linprog(f,A,b) %求min f ' *x sub.to A*x<=b 线性规划的最优解。
x = linprog(f,A,b,Aeq,beq) %等式约束 ,若没有不等式约束 ,则A=[ ],b=[ ]。
x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x的范围 ,若没有等式约束 ,则Aeq=[ ],beq=[ ]
x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options为指定的优化参数
[x,fval] = linprog(…) % 返回目标函数最优值,即fval= f ' *x。
[x,lambda,exitflag] = linprog(…) % lambda为解x的Lagrange乘子。
[x, lambda,fval,exitflag] = linprog(…) % exitflag为终止迭代的错误条件。
[x,fval, lambda,exitflag,output] = linprog(…) % output为关于优化的一些信息
说明 若exitflag>0表示函数收敛于解x,exitflag=0表示超过函数估值或迭代的最大数字,exitflag<0表示函数不收敛于解x;若lambda=lower 表示下界lb,lambda=upper表示上界ub,lambda=ineqlin表示不等式约束,lambda=eqlin表示等式约束,lambda中的非0元素表示对应的约束是有效约束;output=iterations表示迭代次数,output=algorithm表示使用的运算规则,output=cgiterations表示PCG迭代次数。
2.非线性规划问题
利用函数fminbnd求有约束的一元函数的最小值
格式 x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options) % options为指定优化参数选项
[x,fval] = fminbnd(…) % fval为目标函数的最小值
[x,fval,exitflag] = fminbnd(…) %xitflag为终止迭代的条件
[x,fval,exitflag,output] = fminbnd(…) % output为优化信息
命令 利用函数fminsearch求无约束多元函数最小值
函数 fminsearch
格式 x = fminsearch(fun,x0) %x0为初始点,fun为目标函数的表达式字符串或MATLAB自定义函数的函数柄。
x = fminsearch(fun,x0,options) % options查optimset
[x,fval] = fminsearch(…) %最优点的函数值
[x,fval,exitflag] = fminsearch(…) % exitflag与单变量情形一致
[x,fval,exitflag,output] = fminsearch(…) %output与单变量情形一致
注意:fminsearch采用了Nelder-Mead型简单搜寻法。
命令 利用函数fminunc求多变量无约束函数最小值
函数 fminunc
格式 x = fminunc(fun,x0) %返回给定初始点x0的最小函数值点
x = fminunc(fun,x0,options) % options为指定优化参数
[x,fval] = fminunc(…) %fval最优点x处的函数值
[x,fval,exitflag] = fminunc(…) % exitflag为终止迭代的条件,与上同。
[x,fval,exitflag,output] = fminunc(…) %output为输出优化信息
[x,fval,exitflag,output,grad] = fminunc(…) % grad为函数在解x处的梯度值
[x,fval,exitflag,output,grad,hessian] = fminunc(…) %目标函数在解x处的海赛(Hessian)值
注意:当函数的阶数大于2时,使用fminunc比fminsearch更有效,但当所选函数高度不连续时,使用fminsearch效果较好。
利用fmincon求线性有约束的多元函数的最小值
函数 fmincon
格式 x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fmincon(…)
[x,fval,exitflag] = fmincon(…)
[x,fval,exitflag,output] = fmincon(…)
[x,fval,exitflag,output,lambda] = fmincon(…)
[x,fval,exitflag,output,lambda,grad] = fmincon(…)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(…)
函数 fminbnd
格式 x = fminbnd(fun,x1,x2) %返回自变量x在区间 上函数fun取最小值时x值,fun为目标函数的表达式字符串或MATLAB自定义函数的函数柄。
x = fminbnd(fun,x1,x2,options) % options为指定优化参数选项
[x,fval] = fminbnd(…) % fval为目标函数的最小值
[x,fval,exitflag] = fminbnd(…) %xitflag为终止迭代的条件
[x,fval,exitflag,output] = fminbnd(…) % output为优化信息
说明 若参数exitflag>0,表示函数收敛于x,若exitflag=0,表示超过函数估计值或迭代的最大数字,exitflag<0表示函数不收敛于x;若参数output=iterations表示迭代次数,output=funccount表示函数赋值次数,output=algorithm表示所使用的算法。
3.二次规划问题
函数 quadprog
格式 x = quadprog(H,f,A,b) %其中H,f,A,b为标准形中的参数,x为目标函数的最小值。
x = quadprog(H,f,A,b,Aeq,beq) %Aeq,beq满足等约束条件 。
x = quadprog(H,f,A,b,Aeq,beq,lb,ub) % lb,ub分别为解x的下界与上界。
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) %x0为设置的初值
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) % options为指定的优化参数
[x,fval] = quadprog(…) %fval为目标函数最优值
[x,fval,exitflag] = quadprog(…) % exitflag与线性规划中参数意义相同
[x,fval,exitflag,output] = quadprog(…) % output与线性规划中参数意义相同
[x,fval,exitflag,output,lambda] = quadprog(…) % lambda与线性规划中参数意义相同
4. 极小化极大(Minmax)问题
函数 fminimax
格式 x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval,maxfval] = fminimax(…)
[x,fval,maxfval,exitflag] = fminimax(…)
[x,fval,maxfval,exitflag,output] = fminimax(…)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(…)
5.多目标规划问题
函数 fgoalattain
格式 x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fgoalattain(…)
[x,fval,attainfactor] = fgoalattain(…)
[x,fval,attainfactor,exitflag] = fgoalattain(…)
[x,fval,attainfactor,exitflag,output] = fgoalattain(…)
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(…)
6.最小二乘最优问题
有约束线性最小二乘
函数 lsqlin
格式 x = lsqlin(C,d,A,b) %求在约束条件 下,方程Cx = d的最小二乘解x。
x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq满足等式约束 ,若没有不等式约束,则设A=[ ],b=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub满足 ,若没有等式约束,则Aeq=[ ],beq=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0为初始解向量,若x没有界,则lb=[ ],ub=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options为指定优化参数
[x,resnorm] = lsqlin(…) % resnorm=norm(C*x-d)^2,即2-范数。
[x,resnorm,residual] = lsqlin(…) %residual=C*x-d,即残差。
[x,resnorm,residual,exitflag] = lsqlin(…) %exitflag为终止迭代的条件
[x,resnorm,residual,exitflag,output] = lsqlin(…) % output表示输出优化信息
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(…) % lambda为解x的Lagrange乘子
非线性数据(曲线)拟合
函数 lsqcurvefit
格式 x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
[x,resnorm] = lsqcurvefit(…)
[x,resnorm,residual] = lsqcurvefit(…)
[x,resnorm,residual,exitflag] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(…)
非线性最小二乘
函数 lsqnonlin
格式 x = lsqnonlin(fun,x0) %x0为初始解向量;fun为 ,i=1,2,…,m,fun返回向量值F,而不是平方和值,平方和隐含在算法中,fun的定义与前面相同。
x = lsqnonlin(fun,x0,lb,ub) %lb、ub定义x的下界和上界: 。
x = lsqnonlin(fun,x0,lb,ub,options) %options为指定优化参数,若x没有界,则lb=[ ],ub=[ ]。
[x,resnorm] = lsqnonlin(…) % resnorm=sum(fun(x).^2),即解x处目标函数值。
[x,resnorm,residual] = lsqnonlin(…) % residual=fun(x),即解x处fun的值。
[x,resnorm,residual,exitflag] = lsqnonlin(…) %exitflag为终止迭代条件。
[x,resnorm,residual,exitflag,output] = lsqnonlin(…) %output输出优化信息。
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(…) %lambda为Lagrage乘子。
[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqnonlin(…) %fun在解x处的Jacobian矩。
非负线性最小二乘
函数 lsqnonneg
格式 x = lsqnonneg(C,d) %C为实矩阵,d为实向量
x = lsqnonneg(C,d,x0) % x0为初始值且大于0
x = lsqnonneg(C,d,x0,options) % options为指定优化参数
[x,resnorm] = lsqnonneg(…) % resnorm=norm (C*x-d)^2
[x,resnorm,residual] = lsqnonneg(…) %residual=C*x-d
[x,resnorm,residual,exitflag] = lsqnonneg(…)
[x,resnorm,residual,exitflag,output] = lsqnonneg(…)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(…)
6.非线性方程(组)求解
非线性方程的解
函数 fzero
格式 x = fzero (fun,x0) %用fun定义表达式f(x),x0为初始解。
x = fzero (fun,x0,options)
[x,fval] = fzero(…) %fval=f(x)
[x,fval,exitflag] = fzero(…)
[x,fval,exitflag,output] = fzero(…)
非线性方程组的解
函数 fsolve
格式 x = fsolve(fun,x0) %用fun定义向量函数,其定义方式为:先定义方程函数function F = myfun (x)。
F =[表达式1;表达式2;…表达式m] %保存为myfun.m,并用下面方式调用:x = fsolve(@myfun,x0),x0为初始估计值。
x = fsolve(fun,x0,options)
[x,fval] = fsolve(…) %fval=F(x),即函数值向量
[x,fval,exitflag] = fsolve(…)
[x,fval,exitflag,output] = fsolve(…)
[x,fval,exitflag,output,jacobian] = fsolve(…) % jacobian为解x处的Jacobian阵。
其余参数与前面参数相似。