代数结构笔记 - 半群,群,环与域

代数结构笔记 - 半群,群,环与域

初版日期: 2020-6-27

最后更新日期: 2020-7-17

更新次数: 2

概要

    介绍群, 环, 域等命题之间的关系.

正文

        首先要明白二元运算符在集合上有幺元, 零元的定义, 它们都是代数常量.

         二元运算符在集合上可以有封闭性, 结合律, 交换律, 幂等律, 吸收律, 消去律等特性

 

 群与环

 

代数结构笔记 - 半群,群,环与域_第1张图片

                                                                                        图一  群与环之间的关系

有限群的阶数指的是集合G中元素的个数, 记为|G|

有限群的阶数同元素的阶数不是同一个概念, 元素的阶数指的是其值等于二元运算符在元素上做多少次运算后(即元素至少多少次方后), 其值等于幺元 .

循环群的生成元可以不是唯一的.

子群的判别定理

       设是群, H是G的非空子集, H是G的子群, 当且仅当任意a ,b属于H, 则a*power(b,-1)属于H.

显然环集成了两个代数系统, 及其特性.

 

环与域

 

代数结构笔记 - 半群,群,环与域_第2张图片

                                                                                  图二 环与域之间的关系

根据定义域和整环之间看上去没有关系, 其实有如下关系:

每个域是一整环, 即也满足消去律

每个有限整环是一个域

参考

[1]<<离散数学>> 左孝凌 2000版

你可能感兴趣的:(数学,其它)