AbstractQueuedSynchronizer(简称AQS),队列同步器,是用来构建锁或者其他同步组建的基础框架。该类主要包括:
1、模式,分为共享和独占。
2、volatile int state,用来表示锁的状态。
3、FIFO双向队列,用来维护等待获取锁的线程。
AQS部分代码及说明如下:
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
static final class Node {
/** 共享模式,表示可以多个线程获取锁,比如读写锁中的读锁 */
static final Node SHARED = new Node();
/** 独占模式,表示同一时刻只能一个线程获取锁,比如读写锁中的写锁 */
static final Node EXCLUSIVE = null;
volatile Node prev;
volatile Node next;
volatile Thread thread;
}
/** AQS类内部维护一个FIFO的双向队列,负责同步状态的管理,当前线程获取同步状态失败时,同步器会将当前线程以及等待状态等
构造成一个节点Node并加入同步队列;当同步状态释放时,会把首节点中线程唤醒,使其再次尝试同步状态 */
private transient volatile Node head;
private transient volatile Node tail;
/** 状态,主要用来确定lock是否已经被占用;在ReentrantLock中,state=0表示锁空闲,>0表示锁已被占用;可以自定义,改写tryAcquire(int acquires)等方法即可 */
private volatile int state;
}
这里主要说明下双向队列,通过查看源码分析,队列是这个样子的:
head -> node1 -> node2 -> node3(tail)
注意:head初始时是一个空节点(所谓的空节点意思是节点中没有具体的线程信息),之后表示的是获取了锁的节点。因此实际上head->next(即node1)才是同步队列中第一个可用节点。
AQS的设计基于模版方法模式,使用者通过继承AQS类并重写指定的方法,可以实现不同功能的锁。可重写的方法主要包括:
1、公平锁的获取
/**
* Sync object for fair locks
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* 首先尝试获取锁,如果tryAcquire(arg)返回true,获取锁成功;
* 如果失败,则调用acquireQueued(addWaiter(Node.EXCLUSIVE), arg),将当前线程封装成Node节点加入到同步队列队尾,之后阻塞当前线程
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
/**
* 获取state的值,如果等于0表示锁空闲,可以尝试获取;
* 查看当前线程是否是FIFO队列中的第一个可用节点,如果是第一个,则尝试通过CAS方式获取锁, 这保证了等待时间最长的必定先获取锁
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
/**
* 如果发现当前节点的前一个节点为head,那么尝试获取锁,成功之后删除head节点并将自己设置为head,退出循环;
* 如果当前节点为阻塞状态,需要unpark()唤醒,release()方法会执行唤醒操作
*/
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
/**
* 为了避免无意义的自旋,同步队列中的线程会通过park(this)方法用于阻塞当前线程
*/
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
}
2、公平锁的释放
更新状态值state,之后唤醒同步队列中的第一个等待节点,unparkSuccessor(Node node)。
ReentrantLock默认的锁为非公平锁,其主要原因在于:与公平锁相比,可以避免大量的线程切换,极大的提高性能。
先看一个非公平锁的例子:
public class AQS2 {
private ReentrantLock lock = new ReentrantLock(false);
private Thread[] threads = new Thread[3];
public AQS2() {
for (int i = 0; i < 3 ; i++) {
threads[i] = new Thread(new Runnable() {
public void run() {
for (int i = 0; i < 2; i++) {
try {
lock.lock();
Thread.sleep(100);
System.out.println(Thread.currentThread().getName());
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
});
}
}
public void startThreads() {
for (Thread thread : threads) {
thread.start();
}
}
public static void main(String[] args) {
AQS2 aqs2 = new AQS2();
aqs2.startThreads();
}
}
运行结果为:
这段代码(每个线程2次获取锁/释放锁)的运行结果我一开始没有想清楚,之前我是这么想的:
Thread0先获取锁,之后sleep 100ms,那么等待获取锁的同步队列为:
head -> thread1 -> thread2 -> thread0 -> thread1 -> thread2。
从运行结果可知,第二次获取锁的还是thread0,但是锁的释放release(int args)却总是从同步队列的第一个可用节点开始,那就把thread1从队列中移除了,逻辑明显不对了。
后来重新看了代码,比较了非公平锁和公平锁之间的不同时,才终于明白。
非公平锁获取锁最大的不一样的地方在于:线程可以无视sync同步队列插队!一旦插队成功,获得了锁,那么该线程当然也就不用在排队了。所以以上程序的同步队列应该为:
head -> thread1 -> thread2。
非公平锁源代码主要的不同点有2点:
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
//不同点1
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) { //不同点2
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
thread0第一次释放锁之后,会立刻通过lock.lock()操作继续尝试获取锁。非公平锁的lock()方法会直接尝试获取锁,无视同步队列,因此很大概率会再次获得锁;如果失败了,那么执行nonfairTryAcquire(int acquires)方法,该方法和tryAcquire(int acquires)最大的不同在于,缺少了hasQueuedPredecessors()的判断,即不需要判断当前线程是否是同步队列的第一个可用节点,甚至也不需要判断当前线程是否在同步队列中,直接尝试获取锁即可。
理解了AQS的原理后,读写锁也就不难理解了。读写锁分为2个锁,读锁和写锁。读锁在同一时刻允许多个线程访问,通过改写int tryAcquireShared(int arg)以及boolean tryReleaseShared(int arg)方法即可;写锁为独占锁,通过改写boolean tryAcquire(int arg)以及boolean tryRelease(int arg)方法即可。
由于AQS中只提供了一个int state来表示锁的状态,那么如何表示读和写2个锁呢?解决办法是前16位表示读锁,后16位表示写锁。由于锁的状态只有16位,因此无论是对于读锁或者是写锁,其state最大值均为65535,即所有获得了锁的线程的拿到锁的总次数(由于是重进入锁,因此每个线程可以拿到n个锁)不超过65536。由于读写锁主要的应用场景为多读少写,所以如果感觉读锁的65535不够用,可以自己改写读写锁即可,比如分配int state的前24位为读锁,后8位为写锁。
读写锁还提供了一些新的方法,比如final int getReadHoldCount(),返回当前线程获取读锁的次数。由于读状态保存的是所有获取读锁的线程读锁次数的总和,因此每个线程自己的读锁次数需要单独保存,引入了ThreadLocal,由线程自身维护。
ReadLock和WriteLock是ReentrantReadWriteLock的两个内部类,Lock的上锁和释放锁都是通过AQS来实现的。
AQS定义了独占模式的acquire()和release()方法,共享模式的acquireShared()和releaseShared()方法.还定义了抽象方法tryAcquire()、tryAcquiredShared()、tryRelease()和tryReleaseShared()由子类实现,tryAcquire()和tryAcquiredShared()分别对应独占模式和共享模式下的锁的尝试获取,就是通过这两个方法来实现公平性和非公平性,在尝试获取中,如果新来的线程必须先入队才能获取锁就是公平的,否则就是非公平的。这里可以看出AQS定义整体的同步器框架,具体实现放手交由子类实现。
ReadLock和WriteLock方法都是通过调用Sync的方法实现的,所以我们先来分析一下Sync源码:
AQS 的状态state是32位(int 类型)的,辦成两份,读锁用高16位,表示持有读锁的线程数(sharedCount),写锁低16位,表示写锁的重入次数 (exclusiveCount)。状态值为 0 表示锁空闲,sharedCount不为 0 表示分配了读锁,exclusiveCount 不为 0 表示分配了写锁,sharedCount和exclusiveCount 一般不会同时不为 0,只有当线程占用了写锁,该线程可以重入获取读锁,反之不成立。
abstract static class Sync extends AbstractQueuedSynchronizer {
static final int SHARED_SHIFT = 16;
// 由于读锁用高位部分,所以读锁个数加1,其实是状态值加 2^16
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
// 写锁的可重入的最大次数、读锁允许的最大数量
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
// 写锁的掩码,用于状态的低16位有效值
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
// 读锁计数,当前持有读锁的线程数
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
// 写锁的计数,也就是它的重入次数
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
}
重入计数:
abstract static class Sync extends AbstractQueuedSynchronizer {
/**
* 每个线程特定的 read 持有计数。存放在ThreadLocal,不需要是线程安全的。
*/
static final class HoldCounter {
int count = 0;
// 使用id而不是引用是为了避免保留垃圾。注意这是个常量。
final long tid = Thread.currentThread().getId();
}
/**
* 采用继承是为了重写 initialValue 方法,这样就不用进行这样的处理:
* 如果ThreadLocal没有当前线程的计数,则new一个,再放进ThreadLocal里。
* 可以直接调用 get。
* */
static final class ThreadLocalHoldCounter
extends ThreadLocal {
public HoldCounter initialValue() {
return new HoldCounter();
}
}
/**
* 保存当前线程重入读锁的次数的容器。在读锁重入次数为 0 时移除。
*/
private transient ThreadLocalHoldCounter readHolds;
/**
* 最近一个成功获取读锁的线程的计数。这省却了ThreadLocal查找,
* 通常情况下,下一个释放线程是最后一个获取线程。这不是 volatile 的,
* 因为它仅用于试探的,线程进行缓存也是可以的
* (因为判断是否是当前线程是通过线程id来比较的)。
*/
private transient HoldCounter cachedHoldCounter;
/**
* firstReader是这样一个特殊线程:它是最后一个把 共享计数 从 0 改为 1 的
* (在锁空闲的时候),而且从那之后还没有释放读锁的。如果不存在则为null。
* firstReaderHoldCount 是 firstReader 的重入计数。
*
* firstReader 不能导致保留垃圾,因此在 tryReleaseShared 里设置为null,
* 除非线程异常终止,没有释放读锁。
*
* 作用是在跟踪无竞争的读锁计数时非常便宜。
*
* firstReader及其计数firstReaderHoldCount是不会放入 readHolds 的。
*/
private transient Thread firstReader = null;
private transient int firstReaderHoldCount;
Sync() {
readHolds = new ThreadLocalHoldCounter();
setState(getState()); // 确保 readHolds 的内存可见性,利用 volatile 写的内存语义。
}
}
Sync中提供了很多方法,但是有两个方法是抽象的,子类必须实现。下面以FairSync为例,分析一下这两个抽象方法:
static final class FairSync extends Sync {
private static final long serialVersionUID = -2274990926593161451L;
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
writerShouldBlock和readerShouldBlock方法都表示当有别的线程也在尝试获取锁时,是否应该阻塞。
对于公平模式,hasQueuedPredecessors()方法表示前面是否有等待线程。一旦前面有等待线程,那么为了遵循公平,当前线程也就应该被挂起。
下面再来看NonfairSync的实现:
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
final boolean writerShouldBlock() {
return false; // 写线程总是可以闯入
}
final boolean readerShouldBlock() {
//
return apparentlyFirstQueuedIsExclusive();
}
}
/**如果头节点的下一个节点是独占线程,为了防止独占线程也就是写线程饥饿等待,则后入线程应该排队,否则可以闯入*/
final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.thread != null;
}
从上面可以看到,非公平模式下,writerShouldBlock直接返回false,说明不需要阻塞;而readShouldBlock调用了apparentFirstQueuedIsExcluisve()方法。如果等待队列中第一个等待线程想获取写锁,返回true;否则返回false。也就说明,如果等待队列中第一个等待线程想获取写锁,那么该读线程应该阻塞。
如果当前全局处于读锁状态,且等待队列中第一个等待线程想获取写锁,那么当前线程能够获取到读锁的条件为:当前线程获取了写锁,还未释放;当前线程获取了读锁,这一次只是重入读锁而已;其它情况当前线程入队尾。之所以这样处理一方面是为了效率,一方面是为了避免想获取写锁的线程饥饿,老是得不到执行的机会 。
例如:线程C请求一个写锁,由于当前其他两个线程拥有读锁,写锁获取失败,线程C入队列(根据规则i),如下所示
AQS初始化会创建一个空的头节点,C入队列,然后会休眠,等待其他线程释放锁唤醒。
此时线程D也来了,线程D想获取一个读锁,上面规则,队列中第一个等待线程C请求的是写锁,为避免写锁迟迟获取不到,并且线程D不是重入获取读锁,所以线程D也入队,如下图所示:
获取共享lock 方法 acquireShared
public final void acquireShared(int arg){
if(tryAcquireShared(arg) < 0){ // 1. 调用子类, 获取共享 lock 返回 < 0, 表示失败
doAcquireShared(arg); // 2. 调用 doAcquireShared 当前 线程加入 Sync Queue 里面, 等待获取 lock
}
}
Sync实现的尝试获取锁
在以下几种情况,获取读锁会失败:
(1)有线程持有写锁,且该线程不是当前线程,获取锁失败。
(2)写锁空闲 且 公平策略决定 读线程应当被阻塞,除了重入获取,其他获取锁失败。
(3)读锁数量达到最多,抛出异常。
除了以上三种情况,该线程会循环尝试获取读锁直到成功。
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1; //1.有线程持有写锁,且该线程不是当前线程,获取锁失败
int r = sharedCount(c); //2.获取读锁计数
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {//3.如果不应该阻塞,且读锁数
final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
return -1; //1.有线程持有写锁,且该线程不是当前线程,获取锁失败
//2.有线程持有写锁,且该线程是当前线程,则应该放行让其重入获取锁,否则会造成死锁。
} else if (readerShouldBlock()) {
//3.写锁空闲 且 公平策略决定 读线程应当被阻塞
// 下面的处理是说,如果是已获取读锁的线程重入读锁时,
// 即使公平策略指示应当阻塞也不会阻塞。
// 否则,这也会导致死锁的。
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId()) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
//4.需要阻塞且是非重入(还未获取读锁的),获取失败。
if (rh.count == 0)
return -1;
}
}
//5.写锁空闲 且 公平策略决定线程可以获取读锁
if (sharedCount(c) == MAX_COUNT)//6.读锁数量达到最多
throw new Error("Maximum lock count exceeded");
//7. 申请读锁成功,下面的处理跟tryAcquireShared是类似的。
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
private void doAcquireShared(int arg){
final Node node = addWaiter(Node.SHARED); // 1. 将当前的线程封装成 Node 加入到 Sync Queue 里面
boolean failed = true;
try {
boolean interrupted = false;
for(;;){
final Node p = node.predecessor(); // 2. 获取当前节点的前继节点 (当一个n在 Sync Queue 里面, 并且没有获取 lock 的 node 的前继节点不可能是 null)
if(p == head){
int r = tryAcquireShared(arg); // 3. 判断前继节点是否是head节点(前继节点是head, 存在两种情况 (1) 前继节点现在占用 lock (2)前继节点是个空节点, 已经释放 lock, node 现在有机会获取 lock); 则再次调用 tryAcquireShared 尝试获取一下
if(r >= 0){
setHeadAndPropagate(node, r); // 4. 获取 lock 成功, 设置新的 head, 并唤醒后继获取 readLock 的节点
p.next = null; // help GC
if(interrupted){ // 5. 在获取 lock 时, 被中断过, 则自己再自我中断一下(外面的函数可能需要这个参数)
selfInterrupt();
}
failed = false;
return;
}
}
if(shouldParkAfterFailedAcquire(p, node) && // 6. 调用 shouldParkAfterFailedAcquire 判断是否需要中断(这里可能会一开始 返回 false, 但在此进去后直接返回 true(主要和前继节点的状态是否是 signal))
parkAndCheckInterrupt()){ // 7. 现在lock还是被其他线程占用 那就睡一会, 返回值判断是否这次线程的唤醒是被中断唤醒
interrupted = true;
}
}
}finally {
if(failed){ // 8. 在整个获取中出错(比如线程中断/超时)
cancelAcquire(node); // 9. 清除 node 节点(清除的过程是先给 node 打上 CANCELLED标志, 然后再删除)
}
}
}
独占锁模式获取成功以后设置头结点然后返回中断状态,结束流程。而共享锁模式获取成功以后,调用了setHeadAndPropagate方法,从方法名就可以看出除了设置新的头结点以外还有一个传递动作,一起看下代码:
//两个入参,一个是当前成功获取共享锁的节点,一个就是tryAcquireShared方法的返回值,注意上面说的,它可能大于0也可能等于0
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; //记录当前头节点
//设置新的头节点,即把当前获取到锁的节点设置为头节点
//注:这里是获取到锁之后的操作,不需要并发控制
setHead(node);
//这里意思有两种情况是需要执行唤醒操作
//1.propagate > 0 表示调用方指明了后继节点有可能需要被唤醒,因为此方法是获取读锁过程调用,那么后面节点很可能也要获取读锁
//2.头节点后面的节点需要被唤醒(waitStatus<0),不论是老的头结点还是新的头结点
if (propagate > 0 || h == null || h.waitStatus < 0) {
Node s = node.next;
//如果当前节点的后继节点是共享类型获取没有后继节点,则进行唤醒
//这里可以理解为除非明确指明不需要唤醒(后继等待节点是独占类型),否则都要唤醒
//这里的初衷是 后一个节点正好是共享节点,就唤醒,实现共享,独占有锁释放时候唤醒
if (s == null || s.isShared())
//后面详细说
doReleaseShared();
}
}
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}
注:这个唤醒操作在releaseShared()方法里也会调用。唤醒后面想获取锁的节点。
private void doReleaseShared() {
for (;;) {
//唤醒操作由头结点开始,注意这里的头节点已经是上面新设置的头结点了
//其实就是唤醒上面新获取到共享锁的节点的后继节点
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
//表示后继节点需要被唤醒
if (ws == Node.SIGNAL) {
//这里需要控制并发,因为入口有setHeadAndPropagate跟releaseShared两个,避免两次unpark
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
//执行唤醒操作
unparkSuccessor(h);
}
//如果后继节点暂时不需要唤醒,则把当前节点状态设置为PROPAGATE确保以后可以传递下去
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue;
}
//如果头结点没有发生变化,表示设置完成,退出循环
//如果头结点发生变化,比如说其他线程获取到了锁,为了使自己的唤醒动作可以传递,必须进行重试
if (h == head)
break;
}
}
这里分析一下共享锁是如何进行传递的
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
释放锁tryReleaseShared由子类Sync实现
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
// 清理firstReader缓存 或 readHolds里的重入计数
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
// 完全释放读锁
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count; // 主要用于重入退出
}
// 循环在CAS更新状态值,主要是把读锁数量减 1
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// 释放读锁对其他读线程没有任何影响,
// 但可以允许等待的写线程继续,如果读锁、写锁都空闲。
return nextc == 0;
}
}
写锁的获取和ReentrantLock独占锁的锁获取过程几乎一样,除了tryAcquire()方法,要考虑读锁的情况。
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
在以下情况,写锁获取失败:
(1) 写锁为0,读锁不为0 或者写锁不为0,且当前线程不是已获取独占锁的线程,锁获取失败。
(2)写锁数量已达到最大值,写锁获取失败。
(3)当前线程应该阻塞,或者设置同步状态state失败,获取锁失败。
protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// 1.写锁为0,读锁不为0 或者写锁不为0,且当前线程不是已获取独占锁的线程,锁获取失败
if (w == 0 || current != getExclusiveOwnerThread())
return false;
//2. 写锁数量已达到最大值,写锁获取失败
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
//3.当前线程应该阻塞,或者设置同步状态state失败,获取锁失败。
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
(1)首先说一下公平锁和非公平锁的区别,
公平锁:当线程发现已经有线程在排对获取锁了,那么它必须排队,除了一种情况就是,线程已经占有锁,此次是重入,不用排队。
非公平锁:只有一种情况需排队,其他情况不用排队就可以尝试获取锁: 如果当前全局处于读锁状态,且等待队列中第一个等待线程想获取写锁,那么当前线程能够获取到读锁的条件为:当前线程获取了写锁,还未释放;当前线程获取了读锁,这一次只是重入读锁而已;其它情况当前线程入队尾。
(2)获取读锁和释放读锁
获取锁的过程:
当线程调用acquireShared()申请获取锁资源时,如果成功,则进入临界区。
当获取锁失败时,则创建一个共享类型的节点并进入一个FIFO等待队列,然后被挂起等待唤醒。
当队列中的等待线程被唤醒以后就重新尝试获取锁资源,如果成功则唤醒后面还在等待的共享节点并把该唤醒事件传递下去,即会依次唤醒在该节点后面的所有共享节点,然后进入临界区,否则继续挂起等待。
释放锁过程:
当线程调用releaseShared()进行锁资源释放时,如果释放成功,则唤醒队列中等待的节点,如果有的话。
(3)跟独占锁相比,共享锁的主要特征在于当一个在等待队列中的共享节点成功获取到锁以后(它获取到的是共享锁),既然是共享,那它必须要依次唤醒后面所有可以跟它一起共享当前锁资源的节点,毫无疑问,这些节点必须也是在等待共享锁(这是大前提,如果等待的是独占锁,那前面已经有一个共享节点获取锁了,它肯定是获取不到的)。当共享锁被释放的时候,可以用读写锁为例进行思考,当一个读锁被释放,此时不论是读锁还是写锁都是可以竞争资源的。
参考:
https://blog.csdn.net/fxkcsdn/article/details/82217760
https://www.cnblogs.com/everSeeker/p/5582007.html