Hadoop | MapReduce的序列化

MAPREDUCE中的序列化

Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系。。。。),不便于在网络中高效传输;

所以,hadoop自己开发了一套序列化机制(Writable),精简,高效,只对提交的数据进行序列化。

自定义对象实现MR中的序列化接口----未实现比较接口版本
实例:流量统计 -统计每一个用户(手机号)所耗费的总上行流量、下行流量,总流量

package cn.itcast.bigdata.mr.flowsum;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;
/**
* 自定义javaBean用来在mapreduce中充当value
*/
public class FlowBean implements Writable{
	
	private long upFlow;
	private long dFlow;
	private long sumFlow;
	
	//反序列化时,需要反射调用空参构造函数,所以要显示定义一个
	public FlowBean(){}
	
	public FlowBean(long upFlow, long dFlow) {
		this.upFlow = upFlow;
		this.dFlow = dFlow;
		this.sumFlow = upFlow + dFlow;
	}
	
	
	public long getUpFlow() {
		return upFlow;
	}
	public void setUpFlow(long upFlow) {
		this.upFlow = upFlow;
	}
	public long getdFlow() {
		return dFlow;
	}
	public void setdFlow(long dFlow) {
		this.dFlow = dFlow;
	}


	public long getSumFlow() {
		return sumFlow;
	}


	public void setSumFlow(long sumFlow) {
		this.sumFlow = sumFlow;
	}


	/**
	 * 序列化方法
	 */
	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(upFlow);
		out.writeLong(dFlow);
		out.writeLong(sumFlow);
		
	}


	/**
	 * 反序列化方法
	 * 注意:反序列化的顺序跟序列化的顺序完全一致
	 */
	@Override
	public void readFields(DataInput in) throws IOException {
		 upFlow = in.readLong();
		 dFlow = in.readLong();
		 sumFlow = in.readLong();
	}
	
	/**
	*用于reduce输出结果时对象结果的文件内容写入
	*/
	@Override
	public String toString() {
		 
		return upFlow + "\t" + dFlow + "\t" + sumFlow;
	}

}

package cn.itcast.bigdata.mr.flowsum;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCount {
	
	static class FlowCountMapper extends Mapper{
		
		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
			 
			//将一行内容转成string
			String line = value.toString();
			//切分字段
			String[] fields = line.split("\t");
			//取出手机号
			String phoneNbr = fields[1];
			//取出上行流量下行流量
			long upFlow = Long.parseLong(fields[fields.length-3]);
			long dFlow = Long.parseLong(fields[fields.length-2]);
			
			context.write(new Text(phoneNbr), new FlowBean(upFlow, dFlow));
			
			
		}
		
		
		
	}
	
	
	static class FlowCountReducer extends Reducer{
		
		//<183323,bean1><183323,bean2><183323,bean3><183323,bean4>.......
		@Override
		protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {

			long sum_upFlow = 0;
			long sum_dFlow = 0;
			
			//遍历所有bean,将其中的上行流量,下行流量分别累加
			for(FlowBean bean: values){
				sum_upFlow += bean.getUpFlow();
				sum_dFlow += bean.getdFlow();
			}
			
			FlowBean resultBean = new FlowBean(sum_upFlow, sum_dFlow);
			context.write(key, resultBean);
			
			
		}
		
	}
	
	
	
	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		/*conf.set("mapreduce.framework.name", "yarn");
		conf.set("yarn.resoucemanager.hostname", "mini1");*/
		Job job = Job.getInstance(conf);
		
		/*job.setJar("/home/hadoop/wc.jar");*/
		//指定本程序的jar包所在的本地路径
		job.setJarByClass(FlowCount.class);
		
		//指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(FlowCountMapper.class);
		job.setReducerClass(FlowCountReducer.class);
		
		//指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(FlowBean.class);
		
		//指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		//指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		//指定job的输出结果所在目录
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		//将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
		/*job.submit();*/
		boolean res = job.waitForCompletion(true);
		System.exit(res?0:1);
		
	}
	

}

自定义对象实现MR中的序列化接口----实现比较接口版本
实例代码如下:

package cn.itcast.bigdata.mr.flowsum;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable{
	
	private long upFlow;
	private long dFlow;
	private long sumFlow;
	
	//反序列化时,需要反射调用空参构造函数,所以要显示定义一个
	public FlowBean(){}
	
	public FlowBean(long upFlow, long dFlow) {
		this.upFlow = upFlow;
		this.dFlow = dFlow;
		this.sumFlow = upFlow + dFlow;
	}
	
	
	public void set(long upFlow, long dFlow) {
		this.upFlow = upFlow;
		this.dFlow = dFlow;
		this.sumFlow = upFlow + dFlow;
	}
	
	
	
	
	public long getUpFlow() {
		return upFlow;
	}
	public void setUpFlow(long upFlow) {
		this.upFlow = upFlow;
	}
	public long getdFlow() {
		return dFlow;
	}
	public void setdFlow(long dFlow) {
		this.dFlow = dFlow;
	}


	public long getSumFlow() {
		return sumFlow;
	}


	public void setSumFlow(long sumFlow) {
		this.sumFlow = sumFlow;
	}


	/**
	 * 序列化方法
	 */
	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(upFlow);
		out.writeLong(dFlow);
		out.writeLong(sumFlow);
		
	}


	/**
	 * 反序列化方法
	 * 注意:反序列化的顺序跟序列化的顺序完全一致
	 */
	@Override
	public void readFields(DataInput in) throws IOException {
		 upFlow = in.readLong();
		 dFlow = in.readLong();
		 sumFlow = in.readLong();
	}
	
	@Override
	public String toString() {
		 
		return upFlow + "\t" + dFlow + "\t" + sumFlow;
	}

	@Override
	public int compareTo(FlowBean o) {
		return this.sumFlow>o.getSumFlow()?-1:1;	//从大到小, 当前对象和要比较的对象比, 如果当前对象大, 返回-1, 交换他们的位置(自己的理解)
	}

}

package cn.itcast.bigdata.mr.flowsum;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import cn.itcast.bigdata.mr.flowsum.FlowCount.FlowCountMapper;
import cn.itcast.bigdata.mr.flowsum.FlowCount.FlowCountReducer;

/**
 * 13480253104 180 180 360 13502468823 7335 110349 117684 13560436666 1116 954
 * 2070
 * 
 * @author
 * 
 */
public class FlowCountSort {

	static class FlowCountSortMapper extends Mapper {

		FlowBean bean = new FlowBean();
		Text v = new Text();

		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

			// 拿到的是上一个统计程序的输出结果,已经是各手机号的总流量信息
			String line = value.toString();

			String[] fields = line.split("\t");

			String phoneNbr = fields[0];

			long upFlow = Long.parseLong(fields[1]);
			long dFlow = Long.parseLong(fields[2]);

			bean.set(upFlow, dFlow);
			v.set(phoneNbr);

			context.write(bean, v);

		}

	}

	/**
	 * 根据key来掉, 传过来的是对象, 每个对象都是不一样的, 所以每个对象都调用一次reduce方法
	  * @author: 张政
	  * @date: 2016年4月11日 下午7:08:18
	  * @package_name: day07.sample
	 */
	static class FlowCountSortReducer extends Reducer {

		// 
		@Override
		protected void reduce(FlowBean bean, Iterable values, Context context) throws IOException, InterruptedException {

			context.write(values.iterator().next(), bean);

		}

	}
	
	public static void main(String[] args) throws Exception {

		Configuration conf = new Configuration();
		/*conf.set("mapreduce.framework.name", "yarn");
		conf.set("yarn.resoucemanager.hostname", "mini1");*/
		Job job = Job.getInstance(conf);
		
		/*job.setJar("/home/hadoop/wc.jar");*/
		//指定本程序的jar包所在的本地路径
		job.setJarByClass(FlowCountSort.class);
		
		//指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(FlowCountSortMapper.class);
		job.setReducerClass(FlowCountSortReducer.class);
		
		//指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(FlowBean.class);
		job.setMapOutputValueClass(Text.class);
		
		//指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		//指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		//指定job的输出结果所在目录
		
		Path outPath = new Path(args[1]);
		/*FileSystem fs = FileSystem.get(conf);
		if(fs.exists(outPath)){
			fs.delete(outPath, true);
		}*/
		FileOutputFormat.setOutputPath(job, outPath);
		
		//将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
		/*job.submit();*/
		boolean res = job.waitForCompletion(true);
		System.exit(res?0:1);
		
	
	}
	
	

}

你可能感兴趣的:(Hadoop | MapReduce的序列化)